
Design of a mobile robot for navigation and sample collection

Ignat Georgiev

June 21, 2020

Abstract

We have developed a differential drive robot capable of autonomously localising, navigating and
sample collection with a known environment. It is based on the popular Turtlebot3 robot and uses
lidar data in combination with prior motion estimates to localise within a known environment. It
then uses an A* path planning and a waypoint follower to traverse the environment. The robot
is also equipped with a robotic arm which it uses to press buttons, clear paths and collect rock
samples using an inverse kinematics based controller. All of these features are packaged together
to create a modular and scalable solution which can be applied to different environments.

1 Introduction

Figure 1: Curiosity, the NASA Mars
Rover.

Robots are one of the most fascinating machines that hu-
mans have ever developed. They are complex machines
which involve the integration of many different bodies of
knowledge - dynamics, kinematics, artificial intelligence,
computer vision, control theory, and many more. This
makes robotics as interdisciplinary a field as there can
be. Having mastered stationary robotic arms in the past
decades, interests have shifted towards a more interesting,
albeit more difficult, topic - mobile autonomous robots.
These captivating machines have raised hopes of exploring
extraterrestrial planets (Figure 1), replacing humans work-
ers in dangerous environments and offering assistance to
humans with laborious tasks [1].

Despite many advancements in recent years, fully au-
tonomous robots are still a few decades away from entering
day-to-day human life. As such most piratical implementa-
tion of mobile robots are done in limited lab environments
with the hopes of advancing the robotics field. As such, this
report aims to showcase the design of a simple wheeled mo-
bile robot tasked with navigating autonomously around a known environment, interacting with objects
and collecting rock samples with a robotic arm. This was done purely for educational purposes in
collaboration with Alex Roy as part of the Robotics Science and Systems course at the University of
Edinburgh and as such is focused more closely on the software.

In more detail, the robot operates in the environment shown in Figure 2 and is tasked with:

1. Navigating to the button and pressing it.
2. Navigating to the boxes and clearing them away from the path. The box position is randomly

chosen between two possible locations.

1



Figure 2: The robot environment

3. Navigating to one of the predefined sample collection points and picking up a rock sample.
4. Navigating back to its base in less than 5 minutes since the start.

Note that due to the scope and short time span of the project, computer vision has not been used and
instead has been accounted for by predefined positions of objects.

2 Robot design

2.1 The robot

Figure 3: Turtlebot3

The robotic platform supplied for this report was
the Turtlebot3 which is a small and affordable
differential drive robot. It is equipped with 2
DC Dynamixel XM430 motors which can be con-
trolled independently and provide accurate wheel
odometry. Additionally, the robot is equipped
with a 9-axis IMU, Raspberry Pi Camera and an
LDS-01 360◦Lidar. For computation, the robot
uses a Raspberry Pi 3 Model B and an OpenCR
board which is an embedded ARM Cortex M7
controller. Additionally, the robot is equipped
with a 4 degree of freedom Interbotix PX100
robot arm which is controlled with servo motors
and used for manipulation and grasping objects
with the attached gripper.

2.2 Software concept

Overall, our robot followed the standard see-
think-act mobile robot cycle and was designed

2



with modularity and scalability in mind. The 3 major building blocks of the system being:

• Particle filter localization which requires a predefined discrete map of the environment and
works with the motion estimate and lidar data from the robot.

• Navigation consisting of an A* pathfinder and a PID waypoint controller which sends motion
commands to the robot directly.

• Arm controller which executes predefined arm movements and computes the arm joint angles
with inverse kinematics.

These modules are grouped using a High-level State Machine which boots up the whole system,
waits for all required modules to start, distributes tasks from a user-defined action list and waits for
their completion. Tasks consist of:

• move action - move to a given 2D pose - x, y coordinates and orientation.
• arm action - move arm end effector to a given 3D position (x,y,z) position. Additionally, a

movement type can be provided to alter the execution of the task.

The architecture of this system can be seen in Figure 4. Note that the feedback from modules to the
state machine have been omitted for clarity.

move
action

arm
action

High-level
State Machine

pose

Lidar

robot
velocities

Particle Filter
Localization

map

map

Map Loader

path

A*
Motion Planner

robot
commandPID Waypoint

Controller

arm
target

High-level arm
controller

arm
command

feedback Arm Controller
Inverse Kinematics

Figure 4: Software architecture

This whole system runs on the Raspberry Pi on top of ROS Kinetic and Debian Stretch [2]. Although,
we were not allowed to use existing ROS packages, using ROS allowed us to run our system distributed,
troubleshoot the system effectively and visualise data. All of the different modules seen in Figure 4,
except the state machine and the map loader, have been implemented as standalone C++ ROS nodes
as they are required to run in approximately real-time.

To interface with the robot, we have used the provided turtlebot3_core ROS node which runs on the
OpenCR board in real-time and is connected to the Raspberry Pi over serial USB. This node provides
fused position and velocity information from the wheel odometry and IMU, Lidar data and control
interfaces for the robot itself and the arm.

2.3 Simulation

Although the robot is robust and easy to use, real-world experiments are still time-consuming and
troublesome due environment availability, battery life and hardware issues. For those reasons, we

3



Figure 5: Gazebo simulation

decided to create a Gazebo simulation [3] of the task and only test the robot in the real world if it
achieves the desired behaviour in simulation.

The simulation was built with the existing tools available in Gazebo and the open-source turtlebot3
plugin which simulates the robot, its sensors and interfaces. However, due to the non-traditional pairing
of the robot and the Interbotix robot arm, no easy method was found of simulating the arm and instead,
we opted to build it from the ground up. As the arm use servos, we chose to use PID position controllers
from the ROS position_controllers and controller_manager packages to simulate the arm joints.
The arm was then dynamically and visually modelled from CAD files and specifications available from
the manufacturers, resulting in an accurate representation of the arm. Finally, the arm controllers in
the simulation were tuned to match the transfer function of the arm in the real world, see Table 1.
However, we could not simulate the gripper behaviour in Gazebo due to no existing functionality for it
and implementing that ourselves, seemed out of the scope of the project.

Joint P I D
waist 100.0 5.0 0.5
shoulder 500.0 10.0 0.5
elbow 300.0 10.0 0.0
wrist 100.0 3.0 0.0

Table 1: Arm controller gains in simulation

The final part of the simulation is the environment in which the robot is said to operate. To achieve
that we created simple 3D meshes in Blender based on the specifications of the task and integrated
them into our Gazebo simulation using sensible dynamical properties. However, doing this for the
walls of the map proved to be a bad idea as the specifications of the environment did not match the
environment seen in Figure 2. To address that issue we created a new 3D model of the environment
based on the 2D discrete map used in the localisation module. The other objects in the environment
were modelled as boxes using the specifications of the course. The final Gazebo simulation can be seen
below in Figure 5 and was used to fully simulate the task described in this report except for the rock
collection part.

4



2.4 Localisation

Algorithm 1: Particle filter
N : Number of particles
M(·): motion model; m motion sample
Z(·): measurement model; z measurement
sample

Given: starting position x0

Given: starting uncertainty σ0
X0 = initialise_particles(x0, σ0)

for new pair [mt, zt] do
for n = 1 to N particles do

x
[n]
t = M(mt, x

[m]
t−1)

w
[n]
t = Z(zt, x

[n]
t )

add particle [x
[n]
t , w

[n]
t ] to X̄t

for n = 1 to N particles do
draw i with probability wit
add x[i]t to Xt

For the localisation of the robot, we chose to im-
plement a particle filter as it is easy to develop,
scalable and multi-modal. It is used only for es-
timating the pose of the robot which consist of
its x, y positions and orientation - x = [x, y, θ].
To provide spatial information we chose to have
a static discrete map instead of developing a full
SLAM algorithm. Although the performance of
the SLAM might have been superior, the com-
plexity did not justify the additional development
time.

The pseudocode of the algorithm can be seen in
Algorithm 1

For the motion model (Algorithm 2), we explic-
itly decided to use the feedback from the robot in-
stead of the commands sent to it as the feedback
is more inherently a more realistic estimate and
naturally bound to the capabilities of the robot.
However, the robot does not inherently provide
motion uncertainties, which are vital to the mo-
tion model. To address that issue we collected data from the robot while driving it manually in different
circumstances and estimated the noise to be σx = 0.00246 and σθ = 0.02175. During these experi-
ments, it was also noticed that the motion estimation from the turtlebot3_core also gave erroneous
measurements with hue values (eg. 175 rad/s rotational speed), which put off the particle filter and
in some cases made it fail. To protect for such cases, we added filtering for the velocity limits of the
robot.

Algorithm 2: Motion model
Given: xt−1 = [xt−1, yt−1, θt−1]: prior position
estimate
Given: m = [ẋt, θ̇t] motion estimate of forward
velocity and yaw rate
Given: σx and σθ motion uncertainty

xt = xt−1 + (ẋt−1 +N (0, σx)) · cos θt−1

yt = yt−1 + (ẋt−1 +N (0, σx)) · sin θt−1

θt = θt−1 + θ̇t−1 +N (0, σθ)
xt = [xt, yt, θt]

return xt

Finally, for the measurement model Z(·) we de-
cided to use a likelihood-field model instead of a
mathematically formulated model. This decision
simplified the tuning of the particle filter and of-
floaded some of the computation. The image of
the map can be seen in Appendix 7.

In the end, the localisation algorithm ran well and
reliably estimated the position of the robot. Some
fine-tuning was necessary to guarantee real-time
performance. We decided to run the algorithm
at 10Hz with 250 particles using every other lidar
hit. Additionally, we also added a moving average
pose smoothing at the output of the localisation
which stabilised the estimates of the algorithm.

2.5 Navigation

The navigation stack in this report can be split into two stages: path planning and waypoint following.
As per Figure 4, we use a discrete A* path planning algorithm [4] which plans a path for the robot
to follow based on a target position, current position and a discrete map of the environment which
encodes whether there is an obstacle in a given position. This method was chosen due to to its simple
implementation and robustness. The algorithm uses f = g+h to evaluate the score of a given position
on the map, where g gives how close to the goal we are and h is a combined function for other costs

5



(a) Starting position (b) Simple path planning (c) Complex path planning

Figure 6: A* path planning visualisation in RViz. Green path is the final path found. Blue overlay
is the explored nodes. The other blue points in close proximity to the robot are the particles of the
particle filter.

of the path. For the task in this report, g was set to be the Euclidean distance to the target position
and f was set to be high if the explored position would result in the robot crashing into a wall. For
the development of the algorithm, it was important to visualise its operation for debugging purposes,
therefore RViz-compatible visualisations have been made as seen in Figure 6. The algorithm was
developed as a C++ ROS node which allowed it to execute plan paths swiftly. In the worst case for
the task (Figure 6c), a path was made in 210ms onboard the robot.

After a path is found, waypoints are calculated by taking every 10th point of the discrete path found by
the path planner and fed to the waypoint follower, which uses a simple PID control loop for the steering
and controls the forward velocity in an empirically derived way which allows the robot to follow the
waypoints in a sequential order without significant deviation. The full control algorithm can be seen in
Algorithm 3. The parameters used for this report were empirically tuned for a good balance between
fast and smooth control - KP = 2.5, KI = 0.0, KD = 0.4, ẋdesired = 0.1m/s.

2.6 Arm control

Algorithm 3: Control method
KP ,KI ,KD: steering parameters
ẋdesired: desired forward speed
Given: wm = [x, y]: waypoint in the map
frame
Given: x = [x, y]: robot position

wr = TransformToRobotFrame(wm)

θcommand = KP e+KI

∫ t
0
edt+Kd

de

dt

if θcommand >
ẋdesired

2
then

ẋcommand = ẋdesired − θcommand
else

ẋcommand = ẋdesired
sendCommands(ẋcommand, θcommand)

To control the arm, we chose to choose one of the
most tried and true methods - inverse kinemat-
ics (IK). Before attempting anything complex, we
had the important insight that the arm can be
seen as a 3-link planar manipulator on a rotat-
ing base. Due to the relative simplicity of this,
we chose to do Analytical IK instead of the more
common iterative optimisation IK. The solution
for this was based on [5] and adopted to the use
case of this project. If the desired end-effector
position is 3D point and an orientation for the
wrist with variables [x, y, z, φ], then we can split
the solution into stages. The first "shoulder" joint
angle is trivially computed to align the arm to the
target position, then the rest of the system can
be constrained to a single plane and solved ana-
lytically as per [5]. The final analytical solution
is shown below:

6



θ1 = arctan
y

x

γ = arctan
−y/

√
(x2 + y2)

−x/
√

(x2 + y2

σ =
x2 + y2 + L22 − L32

2L2
√
x2 + y2

θ2 = γ − arccosσ

θ3 = arctan
y − L2 sin θ2/L3

x− L2 cos θ2/L3
− θ2

θ4 = φ− θ3 − θ2

(1)

where Ln is the arm link lengths. In our case, we extracted these from the specifications of the arm:
L1 = 0.04225, L2 = 0.105948101, L3 = 0.1 and L4 = 0.0685; all in meters. This always results in
2 possible solutions; the one with the elbow pointing upwards is selected. In addition to this, the
controller was constrained to not attempt to reach positions outside of the reachable area or positions
in the area of the robot. This controller worked fine by itself and the arm was able to achieve all
desired behaviour for the task, however, the hardware controller of the arm was pre-configured for a
static environment (where the arm is mounted on a solid object), which was not the case in our task.
Thus, the robot arm moved surprisingly fast, resulting in large inertias for the robot, causing to turn
over.

Due to this issue, we decided to also implement a high-level arm controller which would sequentially
feed arm animations to the actual controller. Increasing the resolution of these animations allows the
robot to perform more smooth and controlled actions. Sadly, due to time limitations, these animations
were derived manually offline and selected via the high-level state machine.

This strategy of using the robot arm proved more than adequate for the task of pushing the button
and moving the boxes, however, it did not prove reliable enough for picking up the sample towards the
final stage of the task. This was mainly due to inaccuracies in the localisation system and the lack of
any visual feedback when picking up the sample (it is not seen by the lidar). To address this issue, we
opted for a simple strategy of using the arm as a broom and sweeping the area in front of the robot
towards its centre. This allowed us to account for the inaccuracies of the localisation and position the
sample in a more probable position. With this strategy, we achieved 80% success ration on picking up
Rock 1 (see Figure 2).

3 Results

Overall the robot was successful in all of the criteria of the task as defined in Section 1 except for
achieving all of the desired tasks in less than 5 minutes. This resulting from user operation and no
prior validation of the task.

Particle filter localisation worked very reliably after all of the tuning and incremental improvements.
This was essential for the success of the robot as its position is the backbone of all other modules.
After all of the fine-tuning, noise filtering and performance optimisations, the particle filter never failed
and always localised the robot precisely down to an 8cm radius. Sadly, there was no robust method of
evaluating the performance of this algorithm due to the lack of ground truth.

The navigation system of the robot also worked correctly all of the time and managed to navigate the
robot to all reachable parts of the environment within a 5cm radius. There were some small issues with
the navigation stack which resulted from the particle filter becoming inaccurate after a long duration
of standstill. Luckily, this was not a probable scenario in the task and was ignored.

7



The arm controller was the least reliable part of the software of the robot. This was mainly due to bad
hardware, bad decisions, and short development time. As such the arm was very over-tuned to the task
at hand and relied on exceptional localisation and navigation. As such any time, those systems failed
within a small threshold, the arm would fail as well. Luckily, the other systems were reliable enough.

4 Discussion

Although the robot hardware was more than adequate for the task, it also had some limitations as all
robotics systems. The major issue was the bad compatibility between the Turtlebot and the robot arm
which were not designed to be used together. This manifested itself in drastically reduced operational
time of the robot which decreased from 2.5h to 0.5h, the high-centre of gravity, bad motion inertias and
obstruction of the lidar. These issues were overcome with careful operations planning, less dynamic
motion control and sensor filtering. In the future, the choice and placement of such a robotic arm
should be considered more carefully.

The particle filter from Section 2.4 worked for the task, however, there is still room for improvement and
more efficient robot deployment; namely the measurement model. In this report we used a likelihood
field model, however, that is difficult to tune, thus a ray-casting type model as the one in [6] would be
a better option.

One of the major limitations of the A* path planner was the jigsaw-like packages that it produced
in difficult scenarios due to the exploration methodology. This worked for the task of this report but
should be better optimised in a real-world application with a graph optimisation of the path after it
has been found, this would smooth the path and make the robot more efficient in its navigation.

Although we chose to use analytical IK in Section 2.6, that was probably not the best solution to the
problem due to the low-level controller of the arm and the resulting high inertias of the robot. In this
report the issue was fixed with the introduction of manually derived "animations", however, a better
solution to this problem would be to do Iterative IK such as page 19 of [7]. This would result in
automatically smooth arm movements with an artificially added delay.

References

[1] Roland Siegwart et al. Introduction to autonomous mobile robots. MIT press, 2011.

[2] Jason M O’Kane. “A gentle introduction to ROS”. In: (2014).

[3] Nathan Koenig and Andrew Howard. “Design and use paradigms for gazebo, an open-source multi-
robot simulator”. In: 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS)(IEEE Cat. No. 04CH37566). Vol. 3. IEEE. 2004, pp. 2149–2154.

[4] Nicholas Swift. Easy A* Pathfinding. https://medium.com/@nicholas.w.swift/easy-a-star-
pathfinding-7e6689c7f7b2. Accessed: 2019-11-29.

[5] V. Kumar. Planar kinematics. https://www.seas.upenn.edu/~meam520/notes/planarkinematics.
pdf. Accessed: 2019-11-29.

[6] Corey H Walsh and Sertac Karaman. “CDDT: Fast Approximate 2D Ray Casting for Accelerated
Localization”. In: 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE.
2018, pp. 1–8.

[7] Alex Li. Planar kinematics. http://wcms.inf.ed.ac.uk/ipab/rss/lecture-notes-2018-
2019/10%20RSS-Kinematics.pdf. Accessed: 2019-11-29.

8

https://medium.com/@nicholas.w.swift/easy-a-star-pathfinding-7e6689c7f7b2
https://medium.com/@nicholas.w.swift/easy-a-star-pathfinding-7e6689c7f7b2
https://www.seas.upenn.edu/~meam520/notes/planarkinematics.pdf
https://www.seas.upenn.edu/~meam520/notes/planarkinematics.pdf
http://wcms.inf.ed.ac.uk/ipab/rss/lecture-notes-2018-2019/10%20RSS-Kinematics.pdf
http://wcms.inf.ed.ac.uk/ipab/rss/lecture-notes-2018-2019/10%20RSS-Kinematics.pdf


Appendices

A Supplementary images

Figure 7: Localisation likelihood field map

9


	Introduction
	Robot design
	The robot
	Software concept
	Simulation
	Localisation
	Navigation
	Arm control

	Results
	Discussion
	Appendices
	Supplementary images

