
Path planning and control for
an autonomous race car

Ignat Georgiev

MInf Project (Part 1) Report
Master of Informatics
School of Informatics

University of Edinburgh

2019

III

Abstract
Recent technological advancements have enabled the rise of self-driving cars. In re-
sponse to that, a new student competition was introduced, challenging students to de-
velop an autonomous racing car. This requires aggressive path planning and control in
real time, capable of pushing the vehicle to its limits. This project attempts to solve
that problem by surveying the field and then deciding to utilise a novel algorithm un-
der the name Model Predictive Path Integral (MPPI). It combines path planning and
control into a single optimisation and can to handle non-linear system dynamics and
complex cost criteria. A simulation, capable of accurately handling vehicle dynamics,
is designed for development and evaluation. Thereafter a vehicle model of the algo-
rithm is developed using a neural network to learn the dynamics of the car. To achieve
this an automated learning framework is developed. The cost function of the algorithm
is modified for the needs of the project and optimised for speed. Finally, a toolset for
evaluation is created and the algorithm is evaluated in simulation, showing that it is
capable of achieving better performance than human experts.

IV

Acknowledgements

I would like to thank my supervisor Dr Michael Mistry for his continuous support, use-
ful discussions and keeping me focused. I would also like to thank Grady Williams for
his support and conceiving the algorithm this report is based on. Finally, I would like
to thank Edinburgh University Formula Student for sparking my interest in robotics
and for making me the man I am today.

Table of Contents

1 Introduction 1
1.1 Objectives and Contributions . 2
1.2 Report outline . 3

2 Background and Related Work 5
2.1 Motivation . 5
2.2 Problem Definition . 6

2.2.1 Environment . 6
2.2.2 Vehicle . 6
2.2.3 Overall System . 8
2.2.4 Path Planning and Control Problems 8

2.3 Related Work . 9
2.3.1 Path Planning . 10
2.3.2 Control . 10

2.4 Model Predictive Path Integral Control 12
2.4.1 Problem Formulation . 13
2.4.2 Minimisation and Sampling 15
2.4.3 MPPI Algorithm . 18

3 Simulation and Integration 21
3.1 Setup and tools . 21
3.2 MPPI Integration . 22
3.3 Simulated vehicle model . 23

3.3.1 Chassis . 24
3.3.2 Suspension . 25
3.3.3 Tire friction modelling . 27
3.3.4 Motors and control . 29

3.4 Environment modelling . 31
3.4.1 Tracks and map data . 31
3.4.2 Odometry . 32

3.5 Visualisation . 32

4 Model 35
4.1 State representation . 35
4.2 Data . 37

4.2.1 Collection . 37

V

VI TABLE OF CONTENTS

4.2.2 Processing . 38
4.3 Dynamic variables identification . 44
4.4 Learning dynamics . 45

4.4.1 Framework . 45
4.4.2 Setting a Baseline . 46
4.4.3 Neural Network Experiments 47
4.4.4 Online learning . 52

5 Cost 53
5.1 Costmap . 53
5.2 Cost function . 56
5.3 Experiments . 59

6 Conclusions 61
6.1 Summary . 61
6.2 Discussion . 62
6.3 Future Work . 63
6.4 MInf Part 2 . 64

Bibliography 65

Appendices 69

A Formula Student Environment 71

B ADS-DV Sensors and Computing 75

C Neural network experiments 77

Glossary

ADS-DV Autonomous Driving System - Dedicated Vehicle, the car supplied by the
IMechE for the FS-AI competition. 6–8, 23–25, 29–31, 35, 76

CAD Computer Aided Design software. 31

EUFS Edinburgh University Formula Student. 1–3, 5, 8, 9, 21–23, 25, 31, 32, 61, 62,
64

FS Formula Student International student competition. 28

FS-AI Formula Student - Artificial Intelligence. Branch of the Formula Student com-
petition format which challenges students to develop a self-driving vehicle. 5, 6,
71

FSUK Formula Student United Kingdom, International student competition. 7

IMechE Institute of Mechanical Engineers, organisers of the UK Formula Student
competition. 6, 76

MPC Model Predictive Controller, a family of common control algorithms. 11, 12

MPPI Model Predictive Path Integral controller. A stochastic forward-sampling algo-
rithm that combines path planning and control into one. This is the topic of the
report. 2, 3, 12, 13, 18, 22, 23, 31–33, 35, 40, 44, 50–53, 56–59, 61–64, 77

NN Artificial Neural Network. A machine learning model which has gained great
popularity in recent years. 44–51

PID Proportional Integral Derivative, a classic controller for various applications. 7,
9–11

RNN Recurrent Neural Network. A machine learning model which extends stan-
dard neural networks by adding a memory which can be used to propagate data
through time series. 63, 64

ROS The Robotics Operating System - the defacto standard for software system build-
ing in robotics. 8, 21, 22, 29, 32, 38, 40, 42, 58, 62, IX

VII

VIII Glossary

SLAM Simultaneous Localisation and Mapping; a family of algorithms used in the
field of robotics. 8, 23, 62

Mathematical Notation

Note that several symbols have different meanings in the steering section of the report,
this is to be in keeping with the reference that the analysis is based on.

xt Vehicle state at time t. This
vector consists of both kinematic
and dynamic state variables

xk Vehicle kinematic state

xd Vehicle dynamic state

ut Vehicle control signals at time t.
Consists of a target speed and
steering angle

vt Noisy vehicle control signals at
time t

F(·) State transition function

φ(·) Terminal cost function

L Quadratic cost term

α Slip angle

λ Slip ratio

Ω Rotational speed

[∗]w the w denotes that the variable is
in the world coordinate frame

[∗]v the v denotes that the variable is
in the vehicle coordinate frame

ẋ velocity along the x axis of the
coordinate frame

ẏ velocity along the y axis of the
coordinate frame

φ roll. Rotation around the x axis

θ pitch. Rotation around the y axis

ψ yaw. Rotation around the z axis.
Also known as heading

φ̇ roll velocity. Rotational speed
around the x axis

θ̇ pitch velocity. Rotational speed
around the y axis

ψ̇ yaw velocity. Rotational speed
around the z axis. Also known
as heading rate

∆t timestep

Glossary IX

Specialised Terms

Ackermann-type vehicle - everyday cars seen on the road. They are defined as Ack-
ermann if the geometric arrangement of linkages in the steering is designed
to solve the problem of wheels on the inside and outside of a turn needing to
trace out circles of different radii.

Wheelbase - the distance between the front and rear axles of a car.

Track - the distance between the centres of the left and right wheel of a car.

Polygon mesh - a collection of vertices, edges and faces that defines the shape of a
polyhedral object in 3D computer graphics and solid modelling.

Centre of Mass (CoM) - In physics, the centre of mass of a distribution of mass in
space is the unique point where the weighted relative position of the dis-
tributed mass sums to zero.

Moment of Inertia Matrix - a quantity that determines the torque needed for a desired
angular acceleration about a rotational axis.

odometry - term in the robotics field used to define the position and velocity estimates
of a mobile robot relative to its starting position.

rosbag - a convenient data recording tool used within the ROS ecosystem. Full doc-
umentation. Documentation is available at http://wiki.ros.org/rosbag.

Euler angles - the three standard angles (roll, pitch and yaw) which describe the ori-
entation of a rigid body with respect to a fixed coordinate system.

Quaternion angles - alternative method of representing angles with complex numbers.
This representation is usually preferred in practical applications in continuous
space as it solves the issue of the Gimbal lock.

Gazebo - an open-source robotics simulator used for this project.

PyTorch - one of the most popular open-source machine learning libraries for Python.

CUDA - a parallel computing platform and programming model for general comput-
ing on Nvidia graphic cards.

Activation function - a function that is used to ”trigger” a neuron within a neural net-
work.

Learning rule - an optimiser which alters the parameters of neural networks during
learning.

http://wiki.ros.org/rosbag

Chapter 1

Introduction

Figure 1.1: Curiosity, the NASA
Mars Rover. Source: NASA/JPL-
Caltech

Robots are one of the most fascinating machines
that humans have ever developed. They are com-
plex machines which involve the integration of
many different bodies of knowledge - dynamics,
kinematics, artificial intelligence, computer vi-
sion, control theory, optical engineering and many
more. This makes robotics as interdisciplinary a
field as there can be. Having mastered stationary
robotic arms in the past decades, interests have
shifted towards a more interesting, albeit more
difficult, topic - mobile autonomous robots. These
captivating machines have raised hopes of explor-
ing extraterrestrial planets (Figure 1.1), replacing
humans workers in dangerous environments and
offering assistance to humans with laborious tasks
[Siegwart et al., 2011].

Recent technological developments have given
rise to self-driving cars which are now promising to alleviate traffic conges-
tion, reduce road incidents and fatalities, and lower pollution [Thrun, 2010]
[Fagnant and Kockelman, 2015]. These robocars operate similarly to any other au-
tonomous mobile robot. They have to perceive the environment, create a map and
localise within it, plan their next movements based on what they have seen and then
execute a control sequence to achieve a given goal. As such the software behind an au-
tonomous car can be classified into four different categories - perception, localisation,
path planning and control. The focus of this report is on the latter two stages.

The goal of this project is to choose, integrate and evaluate a suitable algorithm for path
planning and control for an autonomous racing car in an aggressive driving scenario.
The motivation for this is to compete in the world’s largest educational competition
Formula Student which challenges students to develop a driverless racing car (Figure
1.2). As such the outcomes of this project are meant to further the efforts of the team
from the University of Edinburgh - Edinburgh University Formula Student (EUFS).

1

2 Chapter 1. Introduction

However, due to a lack of a hardware platform, this project is based entirely in simula-
tion. All of the work presented in this project is entirely the authors unless the opposite
is explicitly stated.

This report initially surveys the fields of path planning and optimal control and designs
a simulation for the development of such algorithms. Then it is chosen to utilise the
recent Model Predictive Path Integral (MPPI) Controller which solves the problems of
path planning and control simultaneously, while relying on a stochastic optimal con-
trol framework and path integrals approximated with an efficient importance sampling
scheme [Williams et al., 2016]. The original implementation of this algorithm by re-
searchers at the Georgia Institute of Technology is then adopted for the purposes of
this project and integrated into the EUFS software stack.

Figure 1.2: Fluela, a driverless racecar made by students from ETH Zurich. Source:
Formula Student Germany

1.1 Objectives and Contributions

Achieving the primary goal of the report - integrating, improving and evaluating the
MPPI algorithm into the EUFS autonomous racing software stack can be broken down
into supplementary goals:

1. Review the literature of path planning, optimal control and system identification.

2. Design a Gazebo simulation for the development of path planning and control
algorithms.

3. Create an efficient and accurate vehicle model to be used by MPPI.

4. Develop an optimisable cost function for MPPI suitable for the purposes of For-
mula Student.

5. Present an unbiased evaluation of the performance of the algorithm and potential
areas for improvement.

1.2. Report outline 3

Additionally, there was other work that was carried out in order to achieve the goals
mentioned above. These are showcased below along with other contributions to the
research community and the EUFS team.

Contributions

1. The simulation developed for this project was also extended to be used for other,
wider-spreading purposes and has been open-sourced.

2. A plug-in for tyre dynamics simulation in Gazebo has been developed.

3. To aid in learning the dynamics of the vehicle, a framework has been developed
for data collection, processing, filtering and training machine learning models.

4. The original MPPI algorithm is extended by allowing it to further learn and im-
prove its dynamics model online.

5. Tools for evaluation, tuning and visualisation of the MPPI algorithm have been
developed and fully integrated.

1.2 Report outline

The following chapters document the course of the project. Chapter 2 deals with
refining the problem, presenting the challenge of Formula Student and the targeted
hardware. Additionally, the chapter touched on system requirements, surveys existing
literature on the topics of path planning and control, and finally presents the MPPI
algorithm. Chapter 3 handles system integration while making the necessary abstrac-
tions and assumptions; the chapter also deals with defining the tools available for this
project, describes the design of the simulation and presents the visualisation utilities
used for debugging. Chapter 4 focuses on the state representation and the model of the
vehicle. This chapter tackles the issues associated with data collection and processing,
identifying an appropriate state representation and learning the dynamics via neural
networks. Chapter 5 deals with the definition of the cost function for MPPI, details a
method of integrating the surrounding world into the cost of the algorithm and evalu-
ates its performance with varying parameters. Finally, Chapter 6 presents a summary
of the work undertaken, the results obtained and possible further steps for improving
the approach based on the results is provided.

Chapter 2

Background and Related Work

2.1 Motivation

The primary motivation for this project is for its results to be used by Edinburgh Uni-
versity Formula Student (EUFS) team for the world’s largest educational competition
- Formula Student. Traditionally, it challenges students to design, manufacture and
build a racing car. Then students take these cars to competitions where they race them
against other university teams, while also being judged on their design and business
prowess. Over the past decade, the competition has significantly expanded. Today
there are 13 different competitions on five different continents held every year and
attract more than 40,000 students.

Recently the UK competition was extended with the new FS-AI format which chal-
lenges students to modify an existing car and make it completely autonomous, that is
without any human intervention. The path planning and control algorithm designed in
the course of this project will be used by the EUFS team for the competition and will
be part of the software stack developed by the student team.

An additional motivation is that although existing control methodologies have proven
to be adequate for many standard vehicle tasks such as lane keeping, turning and park-
ing, there is an important frontier of control at the limits of vehicle performance that
has not been adequately addressed. Autonomous racing and the mitigation of risk dur-
ing collision avoidance are examples of aggressive driving domains in which success
requires vehicles to operate near their performance limits [Funke et al., 2012]. How-
ever, this is a difficult problem to solve due to highly nonlinear operating regimes and
dynamically changing situations which require real-time execution.

5

6 Chapter 2. Background and Related Work

2.2 Problem Definition

2.2.1 Environment

The FS-AI competition consists of three events to challenge the autonomous cars. The
most difficult one and of interest to this project is the trackdrive event. It represents
a closed loop circuit of length between 200m and 500m, where track boundaries are
marked with yellow and blue traffic cones. Cars are required to complete ten laps
overall and are scored according to their average lap time. The autonomous cars have
no prior knowledge of the layout of the track and thus must learn over the course of
the event. The track consists:

• Straights: No longer than 80m.

• Constant Turns: up to 50m diameter.

• Hairpin Turns: Minimum of 9m outside diameter

Figure 2.1: Trackdrive event layout. Source: Formula Student Rules 2019

The other events of the competition are described in Appendix A.

2.2.2 Vehicle

To aid the development of the competition in the UK, the organisers, the IMechE, have
provided teams with an autonomous racing car named the ADS-DV as seen in Figure
2.2. It is an electric powered Ackermann-type vehicle1 designed specifically for the
event and will be the subject of the algorithm developed in this report.

1Ackermann-type vehicles are the ones seen on the road everyday. They are defined as Ackermann
if the geometric arrangement of linkages in the steering is designed to solve the problem of wheels on
the inside and outside of a turn needing to trace out circles of different radii.

2.2. Problem Definition 7

Figure 2.2: The FSUK ADS-DV autonomous car. Source: IMechE

Vehicle Specifications
Key specifications of the vehicle are shown in Table 2.1. These will be later used in
simulation development in Section 3.

The vehicle has a 4-wheel drive system with front and rear axles being powered by a
dedicated Saietta 119R-68 motor independently.

Wheelbase 1530 mm
Track 1201 mm
Overall width 1430 mm
Overall length 2814.6 mm
Max steering angle 27.2°
Static caster 6°
Static camber 2°
Tyre size 13”
Differentials Open
Peak motor torque 55.7 Nm
Peak motor power 17 kW
Continuous motor torque 27.2 Nm
Continuous motor power 8.8 kW
Maximum motor speed 4000 RPM
Total weight (est.) 120 kg

Table 2.1: ADS-DV Key Technical Specifications

Vehicle Commands
The vehicle accepts two types of control commands:

• Steering command with a value in the range [-1, 1]. -1 corresponds to a full left
lock of -27.2°and a value of 1 corresponding to a full right lock of 27.2°.

• Target speed command in m/s with a value between [-40, 40]. Then a low-level
PID controller attempts to reach the target speed as swiftly as possible.

8 Chapter 2. Background and Related Work

The sensor suite and computing of the ADS-DV is detailed in Appendix B.

2.2.3 Overall System

This project is done in collaboration with EUFS and as such is just one part of the
overall system. In this subsection, the overall architecture of the software stack is
presented and how the work in this report contributes to the goal of autonomous racing.

The overall system is similar to a standard autonomous mobile robot and follows the
see-think-act cycle presented by [Siegwart et al., 2011]. On an abstract level, it can
be seen in Figure 2.3. If it is viewed as a pipeline system, then the Path Planning
and Control stages are the absolute latest, and such certain assumptions must be made
about the prior systems in the pipeline. These will be covered in Chapter 3.

The autonomous driving software has two modes. The first is called Exploration mode
where the car has no data about the layout of the racecourse and there is some other
Planning and Control algorithm guiding the car around the racetrack. During this
mode, there is a full-fledged perception system detecting the traffic cones and a SLAM2

algorithm building an accurate map of the environment. Once the car finished a single
lap and the SLAM algorithm loop closes3 and produces a complete map, then the car
transitions into Racing mode where the algorithm developed in this paper takes over
the tasks of Planning and Control.

The overall software stack is based on Ubuntu 16.04 and ROS Kinetic. ROS is a
flexible framework for writing robot software. It is a collection of tools, libraries,
and conventions that aim to simplify the task of creating complex and robust robot
behaviour across a wide variety of robotic platforms. Kinetic is the version of ROS
released in 2016 for Ubuntu 16.04 [O’Kane, 2014].

2.2.4 Path Planning and Control Problems

Traditionally, autonomous control for cars involves a hierarchical approach that splits
the problem into two. First, a path is planned through the environment, and then a
controller is used to follow it. This methodology was first introduced in the DARPA
Grand and Urban Challenges [Paden et al., 2016].

Path Planning
At the highest level, a vehicle’s decision-making system must select a route from its
current position to the requested destination using some representation of the environ-
ment. In the conditions of this report, some might state that path planning is absolute

2Simultaneous Mapping and Localisation (SLAM) algorithms are tasked with constructing or updat-
ing a map of an unknown environment while simultaneously keeping track of a robot’s location within
it.

3Loop closure refers to one of the crucial stages of a SLAM algorithm where it is able to detect
previously seen scenes and correct the map of the environment generated thus far.

2.3. Related Work 9

Perception

Sensors

Mapping and
Localisation Path Planning

Control

Real
World

Figure 2.3: System architecture of EUFS.

as it is possible to easily generate a path that follows the midpoints of the racing cir-
cuit. Although possible, this will not be the most optimal trajectory and assumes that
the car will be able to follow any arbitrary trajectory. A more elaborate approach might
consider deriving the shortest or minimum-cost path along the race circuit using one of
the classical shortest path algorithms such as the Dijkstra algorithm [Dijkstra, 1959] or
A* [Nilsson, 1969]. However, these algorithms have one major limitation - they do not
consider the capabilities of the robot using them. To address that issue one must enter
the domain of model-based planners which consider the kinematics and dynamics of
the vehicle during path planning.

Control
To execute the reference path or trajectory from the path planning system, a feedback
controller is used to select appropriate actuators inputs to carry out the planned motion
and correct tracking errors. Many would state that given that Ackermann-type vehicles
have only 3 degrees of freedom in their pose and only 2 in control, then the control
problem can be solved with simply PID controllers [Zhao et al., 2012]. However, cars
operate in highly nonlinear regimes and are often subject to events which are not di-
rectly controlled by the actuators (e.g. tyre slipping). Furthermore, a control algorithm
must generate an output which is feasible for the car both in absolute terms and in
time-domain terms, as such similar to the previous paragraph, one must make use of
a model of the vehicle. Another concern for this family of algorithms is to not only
generate a command which attempts to reach the desired reference as soon as possible
but to do so while taking into account how these actions would affect the future state
of the car [Liniger et al., 2015].

2.3 Related Work

Given the popularity of the field, there is no lack of both simple and elaborate algo-
rithms for path planning and control in autonomous driving. Most of these take shape
and form of the hierarchical approach described in the previous section - first, a trajec-

10 Chapter 2. Background and Related Work

tory is planned, and then a standard controller is used to follow it. The first successful
implementations can be traced back to the DARPA Grand Challenge [Thrun et al., 2006]
which are very conservative and plan trajectories and control outputs in the safest re-
gions of the vehicle capabilities.

2.3.1 Path Planning

Most frequently used today in robotics overall are the Graph Search Algorithms which
discretise the state space of the robot as a graph, where the vertices represent a finite
collection of vehicle states and the edges represent transitions between vertices. The
desired path is found by performing a search for a minimum-cost in such a graph.
These methods do not suffer from local minima; however, they are limited to opti-
mise only over a finite set of paths, namely those that can be constructed from atomic
motion primitives of the graph. Some of the most widely-recognised ones are Di-
jkstra’s algorithm [Aho and Hopcroft, 1974] and A* [Hart et al., 1968], which have
been implemented successfully in autonomous driving scenarios. The three best cars
in the DARPA Grand Challenge all used A* for path planning or some variation of
it [Dolgov et al., 2008]. Most of these take into account the kinematics of the vehicle
and plan safely possible paths and have even been used in an autonomous driving sce-
nario [Valls et al., 2018]. In recent years there have been attempts to also encompass
the dynamics into this path planning stage, however, that makes the computational
complexity unfeasible [Paden et al., 2016].

Incremental Search algorithms are also popular in path planning. They attempt to
address this issue by promising the same performance as Graph Search Algorithms
at a fraction of the computational cost. These algorithms sample the state space and
incrementally build a reachability tree that maintains a discrete set of reachable states
and possible transitions. Once the graph is large enough so that at least one node is in
the goal region, the desired path is obtained by tracing the edges that lead to that node
from the starting position. Indeed there have been successfully deployed versions of
Rapidly-exploring Random Trees (RRT) in autonomous driving scenarios which take
into account both the kinematics and dynamics [Leonard et al., 2008].

2.3.2 Control

In terms of control, the goal then is to stabilise to the reference trajectory in the pres-
ence of modelling error and other forms of uncertainty. Many of these algorithms rely
on feedback as a function of the nearest point to the reference path. The simplest ap-
proach is a standard Proportional Integral Derivative (PID) controller. In the case of
steering, the car is given a reference trajectory it must follow and its position. Based
on that it can calculate the error e between the two. That error is then fed into:

u(t) = Kpe(t)+Ki

∫ t

0
e(t ′)dt ′+Kd

de(t)
dt

2.3. Related Work 11

where Kp, Ki and Kd are all non-negative, denote the coefficients for the proportional,
integral, and derivative terms respectively (sometimes denoted P, I, and D).

PID controllers operate as seen in Figure 2.4, however, they suffer from short sighted-
ness as at timestep t, they only considers the next timestep t + 1. The issue of this is
highlighted between e2 and e3. In the figure at timestep t = 2 the PID controller mea-
sures an error e2 and then using the equation above calculates a new control command
u(t = 2) which is then continuously applied until timestep t = 3. However, at some
point, the trajectory of the car crosses the reference trajectory and overshoots resulting
in an increased error e3. Given enough time, the car will reach the reference trajectory,
but this solution is not optimal. A similar issue persists if PID is applied to control the
speed or throttle, yet this is still widely used in practice [Alonso et al., 2013].

Figure 2.4: PID Controller for steering of an autonomous car.

An alternative to PID are the Model Predictive Control (MPC) family of algorithms.
Although there is a considerable variety in this category most, in general, follow the
architecture in Figure 2.5. The main advantage of MPCs is the fact that they allow the
current timestep to be optimised while accounting for the future time horizon. This
is achieved by forward-sampling (or simulating) into the future using a model of the
vehicle. The possible control sequence and trajectory are then optimised over a finite
time-horizon but only implementing the current timestep and then optimised again.
This is repeated until convergence or a satisfactory solution is obtained. The key here
is that the optimisation is subject to a variety of costs and constraints such as the
rotation of the steering wheel.

Model

ControlsOptimiser

ConstraintsCosts

Reference

State

Plant

Figure 2.5: Standard MPC architecture

Figure 2.6 showcases how MPC compares to the previous PID example in Figure 2.4.
For the sake of comparison, the first sampled trajectory (the one with the biggest error)
is similar to the one generated by the PID controller. Then the optimiser measures the

12 Chapter 2. Background and Related Work

Figure 2.6: MPC for steering of an autonomous car.

predicted error at each timestep and re-optimises the control sequence. The process is
repeated to gain the 3rd and most optimal trajectory.

The MPC coupled with one of the standard path planning methods discussed at the
beginning of the subsection is the standard in the industry today and has many suc-
cessful applications to autonomous vehicles [Thrun et al., 2006] [Paden et al., 2016]
[Urmson et al., 2008] and in aggressive driving [Valls et al., 2018] [Funke et al., 2012].
Although the approaches above make control problems tractable, the decomposition
into planning and control phases introduces inherent limitations. In particular, the path
planner typically has coarse knowledge of the underlying system dynamics, usually
only utilising kinematic constraints [Dolgov et al., 2008] [Pepy and Lambert, 2006].
This means that performing aggressive manoeuvres is problematic since the planned
path may not be feasible. Attempts have been made to address the issue [Pepy et al., 2006]
but then we end in a scenario where the planning and control algorithms are solving
the same problem individually. Due to their close relation, a better option will be to
combine the two processes into one. However, an issue then arises of computational
capability and the real-time requirements.

There have been approaches trying to solve the planning and control problems simul-
taneously in limited lab environments [Keivan and Sibley, 2013] or by solving the op-
timal control inputs offline and then applying a controller to stabilise about an open
loop trajectory [Velenis et al., 2007]. Another work for aggressive sliding manoeuvres
to avoid collision where optimal paths are generated offline for a variety of states and a
controller is synthesised using Gaussian Process regression [Tsiotras and Diaz, 2014].
However, in all of these methods, most of the computation is done offline over a fi-
nite number of states which would not be suitable for the case of aggressive driving
required by this project.

2.4 Model Predictive Path Integral Control

The approach that addresses all concerns from the previos section is the Model Pre-
dictive Path Integral (MPPI) Controller developed by researches at Georgia Institute
of Technology [Williams et al., 2017]. Unlike the approaches in the previous section,
this algorithm focuses on the Reinforcement Learning (RL) task of computing the most
optimal trajectory and control sequence simultaneously in an open-loop. This is done
using a stochastic optimal control approach and exploiting a fundamental relationship

2.4. Model Predictive Path Integral Control 13

between the information theoretic notations of free energy and relative entropy result-
ing in an optimal solution which takes the form of iterative update law which can then
be stochastically forward-sampled in parallel on a GPU. This approach is based on
path integral control theory which has been put to practice in [Williams et al., 2016].
The appeal of the path integral framework is that it requires no derivatives of dynam-
ics or costs. This in term allows for the faster optimisation needed in an autonomous
racing scenario.

One of the major breakthrough of the MPPI algorithm is that it does not make the
assumptions of control-affine dynamics. This allows for purely data-driving model
learning. For example, one can leverage the recent advancements in machine learning
to train a neural network to represent the model.

For the above reasons and the fact that the algorithm has been open-sourced, it was
chosen to make the MPPI the main focus of this report. Therefore the rest of the
chapter is devoted to the theory behind MPPI as derived by [Williams et al., 2017].

2.4.1 Problem Formulation

Consider the state and controls of the robot at time t to be denoted as xt ∈ Rn and
ut ∈ Rm. Then we can define the state transition as:

xt+1 = F(xt,vt) (2.1)

where we assume that the actual control inputs are sampled from vt ∼ N (ut,Σ) due
to the noise induced in many robotic systems where the commanded input has to pass
through other low-level controllers. Now we also define u(·) : [t0,T]→ Rm as the
function which maps time to control inputs. Additionally, we define the function τ :
[t0,T]→Rn of the system. Now it is possible to define the optimal control commands:

u∗(·) = argmin
U

EQ

[
φ(x,T)+

∫ T

t0
L(xt ,vt , t)dt

]
(2.2)

where φ(·) is the terminal cost and L is the quadratic cost term.

We now define V = (v0,v1, ...vT−1) as the sequence of inputs over some timesteps T
which is itself a random variable defined as mapping V : Ω→ΩV . Now there are three
distributions of interest:

• P is the probability distribution of input sequences in an uncontrolled system
(i.e. U ≡ 0)

• Q is the probability distribution when the control input is an open-loop control
sequence

• Q∗ is the abstract optimal distribution in RL terms.

14 Chapter 2. Background and Related Work

The probability density functions for these can then be denoted as p, q and q∗, where
the first two have analytical forms:

p(V) =
T−1

∏
t=0

Z−1 exp
(
− 1

2
vT

t σ
−1vt

)
(2.3)

q(V) =
T−1

∏
t=0

Z−1 exp
(
− 1

2
(vt−ut)

T
σ
−1(vt−ut)

)
(2.4)

where Z =
√
(2π)m|σ|.

Then given initial conditions x0 and an input command sequence V , we can deter-
mine the system trajectory by recursively applying F. For the most optimal trajectory,
we need to define a cost to which we need to optimise. Below we define the state-
dependent cost function for trajectories:

C(x1,x2, ...,xT) = φ(xT)+
T−1

∑
t=1

q(xt) (2.5)

where q(·) is the instantaneous state cost. This is then mapped over input sequences.

The final state is to define the free-energy of the control system (F,S,λ) with coeffi-
cient λ as:

F (V) =−λ log
(
EQ

[
p(V)

q(V)
exp−1

λ
S(V)

])
(2.6)

Through the definitions of p(V) and q(V), we can then rewrite and minimise it to:

= EQ

[
S(V)+

λ

2

T−1

∑
t=0

uT
t Σ
−1ut

]
(2.7)

For the full derivation and minimisation of the above term, please refer to [Williams et al., 2017].
This leaves us with the cost of an optimal control problem bounded from below by the
free energy of the system. Now we define the abstract optimal solution Q∗ through its
density function:

q∗(V) =
1
η

exp
(
− 1

λ
S(V)p(V)

)
(2.8)

where η is the normalisation constant. Now we have the optimal distribution and can
compute the controls to push the controlled distribution as close as possible to the

2.4. Model Predictive Path Integral Control 15

optimal one. Formally this is defined with the KL divergence and is solved in the next
subsection:

U∗ = argmin
U

DKL(Q∗‖Q) (2.9)

2.4.2 Minimisation and Sampling

In this subsection, we will refer to the minimisation of Equation 2.8 and its sampling
as presented by [Williams et al., 2017].

Using the definition of KL divergence [Kullback and Leibler, 1951]:

DKL(Q∗‖Q) =
∫

ΩV

q∗(V)log
(

q∗(V)

q(V)

)
dV

=
∫

ΩV

q∗(V)log
(

q∗(V)

p(V)

p(V)

q(V)

)
dV

=
∫

ΩV

q∗(V)log
(

q∗(V)

q(V)

)
−q∗(V)log

(
q(V)

p(V)

)
dV

(2.10)

Figure 2.7: Visualisation of the information theoretic control objective of “pushing” the
controlled distribution close to the optimal one. [Williams et al., 2017].

Neither the optimal distribution q∗(V) nor the uncontrolled dynamics distribution p(V)
depend on the control inputs U we apply. Therefore we can now express U∗, flip the
sign and change the minimisation to maximisation:

U∗ = argmin
U

∫
ΩV

−q∗(V)log
(

q(V)

p(V)

)
dV

= argmax
U

∫
ΩV

q∗(V)log
(

q(V)

p(V)

)
dV

(2.11)

16 Chapter 2. Background and Related Work

From equations 2.3 and 2.4 we can show that:

q(V)

p(V)
= exp

(T−1

∑
t=0
−1

2
uT

t Σ
−1ut +uT

t Σ
−1vt

)
(2.12)

Inserting it into Equation 2.11 gives us:

U∗ = argmax
U

∫
ΩV

q∗(V)

(T−1

∑
t=0
−1

2
uT

t Σ
−1ut +uT

t Σ
−1vt

)
dV (2.13)

After integrating our the probability in the first term, this expands to:

U∗ = argmax
U

(T−1

∑
t=0
−1

2
uT

t Σ
−1ut +uT

t

∫
ΩV

q∗(V)Σ−1vtdV
)

(2.14)

This is concave with respect to each ut , therefore we can find the maximum with
respect to each ut by taking the gradient and setting it to zero, yielding:

u∗t =
∫

q∗(V)vtdV (2.15)

This effectively gives us our optimal control input u∗t . This can be obtained only be
sampling from the optimal distribution Q∗. However, as we introduced in 2.4.1 Q∗ is
an arbitrary distribution, and we cannot directly sample from it. Instead, we can do it
via importance sampling as introduced in [Luo et al., 2016].

Importance sampling allows us to sample from an unknown distribution by drawing
samples from a proposal distribution and re-weight the integral using the importance
weights in such a way that the correct distribution is targeted. For example, if we have
a well-defined integral:

J =
∫

X
h(x)dx

it can be expressed as an expectation for a wide range of probability distributions:

J = E f [H(X)] =
∫

X
H(x) f (x)dx

where f denotes the density of a probability distribution and H is:

H(x) =
h(x)
f (x)

now J becomes

2.4. Model Predictive Path Integral Control 17

J =
∫

X

h(x)
f (x)

f (x)dx

if we know the probability density function f (x) and under the restriction f (x) > 0
when h(x) 6≡ 0 we can sample approximate the unknown distribution h(x) [Luo et al., 2016].

Using this technique, we can now rewrite Equation 2.15 as:

u∗t =
∫

q
q∗(V)

p(V)

p(V)

q(V)
vtdV (2.16)

Now we can rewrite it as an expectation with respect to Q:

u∗t = EQ[w(V)vt] (2.17)

where the importance sampling weight coupled with Equation 2.8 becomes:

w(V) =
q∗(V)

p(V)
exp
(T−1

∑
t=0
−vT

t Σ
−1ut +

1
2

uT
t Σ
−1ut

)
=

1
η

exp
(
− 1

λ
S(V)+

T−1

∑
t=0
−vT

t Σ
−1ut +

1
2

uT
t Σ
−1ut

) (2.18)

To obtain a full solution we need to swap the variables ut +εt = vt and denote the noise
sequence as E = (ε0,ε1, ...εT−1 we can then define w(E) as:

w(E) =
1
η

exp
(
− 1

λ

(
S(U +E)+λ

T−1

∑
t=0

1
2

uT
t Σ
−1(ut +2εt)

))
(2.19)

where η can be approximated using the Monte-Carlo estimate:

η =
N

∑
n=1

exp
(
− 1

λ

(
S(U +E)+λ

T−1

∑
t=0

1
2

uT
t Σ
−1(ut +2εt)

))
(2.20)

with each of the N samples drawn from the system with U as the control input. We
then have the iterative update law:

vi+1
t = vi

t +
N

∑
n=1

w(En) (2.21)

Note that this iterative procedure exists only to improve the Monte-Carlo estimate of
Equation 2.16 by using a more accurate importance sampler. This scheme would not
be needed if we were able to sample Q∗ directly.

18 Chapter 2. Background and Related Work

2.4.3 MPPI Algorithm

In the setting of this algorithm, optimisation and execution take place simultaneously:
a control sequence U = (ut ,ut+1,ut+2...) is computed, then the first element ut is
executed. This procedure is repeated using the un-executed portion of the previous
control sequence as the importance sampling trajectory for the next iteration while
utilising the transition model F(·) from Equation 2.1.

If given access to a perfect model, then doing forward-sample would be enough to find
the most optimal trajectory and control sequence. However, the real world is complex,
and even if a perfect vehicle model exists, it would be difficult to predict motion in
real-time. Instead, here it is assumed that the model will inevitably be error-prone.
This coupled with the inherently noisy control inputs as defined in Section 2.4.1 will
make a single forward-sampled control sequence noisy and not consistently optimal.
To address that, it is possible to Monte-Carlo estimate the optimal control sequence by
forward-sampling multiple noisy control sequences and then cost-weighted averaging
all of the sampled trajectories. A key to this is to have an underlying costmap which
gives the cost of being on a particular location on the race course. The sampling
process is visualised in Figure 2.8. It can be seen that if only one trajectory is sampled,
it is noisy and inefficient. Even if four trajectories are sampled, they are still diverse
and if averaged, the result would still be unstable. Cost-wise averaging ten sampled
trajectories might result in a smooth optimal trajectory as seen in the figure. In that
setting, trajectories with high costs like the first one will have less weight as the cost
of following it is high. It is worth noting that Figure 2.8 shows a simplified example.
In practice, it is needed to sample significantly more than 10 trajectories in order to
consistently find the optimal one.

Now it is possible to define the full MPPI algorithm as developed in [Williams et al., 2017]:

2.4. Model Predictive Path Integral Control 19

Algorithm 1: MPPI Algorithm
1 Given: F: Transition Model
2 K: Number of samples
3 T : Number of timesteps
4 (u0,u1...uT−1): Initial control sequence
5 Σ,φ,q,λ: Control hyper-parameters

6 while task not completed do
7 x0← GetStateEstimate()
8 for k← 0 to K−1 do
9 x← x0

10 Sample Ek = (εk
0,ε

k
1, ...ε

k
T−1)

11 for t← 1 to T do
12 xt ← F(xt−1,ut−1 + εk

t−1)

13 S(Ek) +=

q(xt)+λuT
t−1Σ−1εk

t−1
14 end
15 S(Ek) += φ(xT)

16 end

17 β←mink[S(Ek)]

18 η← ∑
K−1
k=0 exp

(
− 1

λ
(S(Ek)−β)

)
19 for k← 0 to K−1 do
20 w(Ek)←

1
η

exp
(
− 1

λ
(S(Ek)−β)

)
21 end

22 for t← 0 to T −1 do
23 ut += ∑

K
k=1 w(Ek)εk

t
24 end

25 SendToActuators(u0)
26 for t← 1 to T −1 do
27 ut−1← ut
28 end

29 uT−1← Initialise(uT−1)
30 end

Figure 2.8: MPPI Sampling and cost-wise
averaging

Chapter 3

Simulation and Integration

3.1 Setup and tools

As the end-goal is to integrate this project into the EUFS software stack as presented in
Section 2.2.3, this requires results of this report to be implemented for ROS. This does
impose limitations of available tools and programming languages, however, ROS offers
a plethora of other benefits including standard communication methods, easy visuali-
sation and parameter tuning [O’Kane, 2014]. For this reason and the fact that the MPPI
source code provided by GeorgiaTech is also integrated with ROS [Williams, 2019], it
was chosen to use ROS Kinetic and a combination of C/C++, Python and CUDA as
the main development tools for this project.

Simulation choice
The next important step for the development of this project is to choose a simulation
environment which meets the following requirements:

• Accurate simulation of the vehicle kinematics and dynamics.

• Efficient real-time simulation.

• Ease of use and integration with the project.

• Reusable by the EUFS team for other development.

With the rise of interest towards autonomous cars, in recent years different simulators
have been developed with this particular use in mind. The most popular open-source
ones are CARLA [Dosovitskiy et al., 2017] and AirSim [Shah et al., 2018]. However,
these and similar simulators focus on providing high-fidelity visuals which require
extensive processing power but yield no benefits for the aim of this project.

Instead, the author opted for a more standard robot simulator which usually offer better
physics simulation. The most popular simulators are:

• V-REP is one of the most complex and versatile robotics simulators available.
It offers multiple physics engines, a large model library and it’s highlight feature

21

22 Chapter 3. Simulation and Integration

- mesh manipulation1. However, V-REP is also very resource hungry and its
unique features are not of interest for this project [Rohmer et al., 2013].

• ARGoS sacrifices environment and physics complexity for efficient swarm robotics
simulation. It is usually favoured for research in the areas of multi-agent envi-
ronments, however, it offers very limited customisation [Pinciroli et al., 2011].
Similarly to V-REP, the unique features this simulator offers are of no interest to
this project, which values accurate physics simulation above all.

• Gazebo occupies a space between V-REP and ARGoS, while also being the
simplest and most optimised simulator for single-robot environments. This com-
bined with its versatile robot modelling and out-of-the-box integration with ROS
have made it a favourite within the robotics community [Koenig and Howard, 2004].

With the above in mind, Gazebo is the obvious choice for this project and the remainder
of this chapter will be focusing on building an accurate simulator with Gazebo.

3.2 MPPI Integration

The MPPI source code is already developed to work with ROS and follows many of the
standard conventions. Thus, integrating it into the EUFS software stack is simplified.
An overall layout of the system is seen in Figure 3.1, where the red boxes represent the
ready-available MPPI algorithm in the form of a ROS node, which will not be modified
extensively. Instead the goal of this project is to provide the surrounding systems, with
the blue boxes being the inputs and the yellow boxes being the outputs. However, since
this project is abstracted from the states prior to Planning and Control (Section 2.2.3),
then it is necessary to make certain assumptions which will be highlighted below. The
three main inputs necessary to run the algorithm are:

Odometry

ControlsMPPI

CostmapModel

State

MPPI
plant

Simulated
car

SLAM Localisation

Visualisation

Performance
evaluation

Figure 3.1: MPPI node interactions. Each box represents an independent ROS node.

1. Model - as any MPC-type algorithm, a vehicle model is necessary for the forward-
sampling. This is explored in Chapter 4.

1Mesh manipulation refers to the process of altering a collection of vertices, edges and faces that
define the shape of a polyhedral object in 3D computer graphics

3.3. Simulated vehicle model 23

2. Costmap - in Section 2.4 it was seen that MPPI cost-weight averages multiple
sampled trajectories. The most important of these costs is the map which gives
spacial information to the algorithm. Such a map is usually provided by a SLAM
algorithm, however, that is not available at the time of writing this. Thus, it
was decided abstract that by 1) assuming that the SLAM will output 2D bird’s
eye cone locations. This ”map data” is simulated in Section 3.4. The costmap
generation is then tackled in Chapter 5.

3. Odometry - the car (and in extension the MPPI algorithm) must always be aware
where it is in the world in order to plan a trajectory correctly. Estimating odom-
etry is a difficult task and dependent on the hardware available. However, 2)
odometry estimation is assumed to be handled elsewhere in the EUFS software
stack, thus for the purposes of this project, the odometry is simulated which will
be covered towards the end of this chapter.

After the algorithm has received all of the necessary inputs, it can output its control
sequence and other auxiliary data which is handled by the nodes in yellow (Figure 3.1):

1. Simulated car - since the project is entirely based in simulation, one must be de-
veloped in order to evaluate the algorithm and its performance. This simulation
development is handled for the remained of this chapter.

2. Visualisation - essential in debugging such a complex algorithm. Helpful visu-
alisations are handled in Section 3.5.

3. Tools for performance evaluation of MPPI are also developed and coupled within
a single node. This is elaborated on throughout Chapter 5.

3.3 Simulated vehicle model

Gazebo does not offer standard Ackermann robot models and constructing a new model
altogether can be time-consuming and distracting from the goal of this project. Instead,
it was chosen to base the vehicle model on existing implementations and then tailor
them for the purposes of this project. The author opted for the rb car simulation
model developed by Robotnik Automation [Automation, 2018], which is created as a
simulation for a self-driving golf cart.

A mesh file of the ADS-DV was provided by the competition organisers in STL format
featuring 422,928 faces as seen in Figure 3.2(a). As the mesh represents a rigid body,
it must be broken down into two separate components: chassis with bodywork and
suspension with wheels.

Throughout the rest of this chapter, the model computation efficiency will be evaluated
with the real-time factor metric of Gazebo. This metric is within the range [0, 1] with
1 meaning that the simulation is running at real-time with respect to the computer wall
time.

24 Chapter 3. Simulation and Integration

(a) The raw ADS-DV vehicle mesh. (b) The cleaned up and final mesh of the
chassis and bodywork.

Figure 3.2: The ADS-DV vehicle mesh.

3.3.1 Chassis

First, it is needed to take the original mesh as seen in Figure 3.2(a) and strip it down
to include only the chassis and bodywork of the vehicle. This was done in MeshLab,
which is an open-source mesh manipulation tool. The resulting can be seen in Figure
3.2(b) containing 144,726 faces.

To insert this mesh into Gazebo, three important parameters are needed:

• Mass - overall vehicle mass is estimated to be 120 kg as seen in Table 2.1.
The vehicle is equipped ULTRALITE Mini Wheels 13x6J weighing 4.7 kg and
Hoosier tyres #43163 weighting 5kg. Based on this it is possible to approximate
the mass the mesh by subtracting the mass of the four wheels from the mass of
the vehicle:

120−4× (4.7+5) = 81.2kg

• Centre of mass - difficult to approximate without empirical results from the real
vehicle. However, it is known that the batteries of the car are situated at the exact
centre of the chassis in all x,y,z axes, it is possible to assume that the centre of
mass of the batteries is at the origin of the chassis mesh. Furthermore, in electric
Formula Student vehicles, batteries usually account for more than half of the
total weight, therefore, it will be a safe 3) assumption that the centre of mass of
the vehicle will be the origin of the chassis mesh.

• Moment of Inertia Matrix - for the continuous body the inertia matrix is given
by:

I =
∫ ∫ ∫

Q
ρ(r)((r · r)E− r⊗ r)dV

Where r defines the coordinates of a point in the body, ρ(r) defines the mass
density at that point, r is the identity tensor and the integral is taken over the
volume of the body.

The available mesh does not have mass information for each vertex, therefore
ρ(r) is unknown. The author makes the 4) assumption that the mass density is

3.3. Simulated vehicle model 25

normally distributed along the x,y,z axes with mean µ = [0,0,0] and standard de-

viation σ = [
2L
3
,
2W
3

,
2H
3
], where L is the vehicle height, W is the vehicle width

and H is the vehicle height. This is a valid assumption due to the symmetric
properties of the car.

With this assumption is possible to compute the inertia matrix, which the author
calculates with MeshLab. It was found out to be:

I =

0.2429 0.0969 0.0788
0.0969 0.2422 0.0787
0.0788 0.0787 0.3428


When this mesh as swapped in the rb car model as both a visual and a collision mesh,
its fidelity and detail proved to be too high for Gazebo and on each interaction between
the environment and the model mesh, a real-time factor of ¡0.1 was reported.

Based on this bad performance, the author concluded that it is needed to reduce the
fidelity of the chassis mesh as much as possible without deforming the overall shape
of the car. This would not cause any issues with the simulation of the kinematics of the
vehicle as long as the mass, centre of mass and inertia matrix from the original mesh
is maintained.

The mesh complexity was then reduced by removing all of the internals of the mesh
(batteries, electronics, motors, computers etc..) as they would not be the first parts of
the mesh to collide with external objects. Then the fidelity of the mesh was reduced
using Quadric Edge Collapse Decimation [Hoppe, 1999] to only 48,238 faces (with
MeshLab). With this new minimised mesh, the Gazebo simulator maintained a real-
time factor close to 1 even when colliding with multiple objects.

3.3.2 Suspension

The suspension of the vehicle is crucial to the simulation of the kinematics and dy-
namics of the vehicle. Ideally this should be validated on the real vehicle by col-
lecting telemetry data, however that is not available at the time of the writing, there-
fore, the author can only approximate the suspension using empirical static tests with
the suspension of SISU 3, the 2018 internal combustion car developed by EUFS and
the vehicle dynamics analysis thesis by fellow EUFS team member Martin O’Connor
[O’Connor, 2018].

Although the suspension system of a Formula Student vehicle is complex and difficult
to analyse, it can be simplified to the 7 degree-of-freedom model as seen in Figure 3.3.

This model can then be split into 8 parts of interest to this project - the 4 suspension
damping models which are shown as ZBLU, ZFLU, ZBRU and ZFRU and the 4 con-
tact force and friction models between the tyres and the ground. Due to the symmetric
properties of the ADS-DV vehicle as discussed in Section 3.3.1, it can be 5) assumed
that the 4 suspension damping models are identical and the 4 tyre models are identical.

26 Chapter 3. Simulation and Integration

Roll Bar

Sprung Mass

(Chassis)

Unsprung Mass

(Wheel Assembly)

Shock

Absorber

Tyre

Ground

ZBLU ZFLU

ZBRU ZFRU

ZC P

Q

Figure 3.3: 7 D.O.F. dynamics model of a car [O’Connor, 2018]

The internal forcing on the springs can be broken down into the three standard equa-
tions which are produced as described by [O’Connor, 2018]:

Qdamping =C · (ṙk− ṙk−1)

Qgravity =−g · Ik

Q f orcing = ZCoM

(3.1)

Qgravity and Q f orcing will be handled by the physics engine in Gazebo by using the
hardware interface/EffortJointInterface joint model2 to simulate shocks which
comes as standard with Gazebo. Therefore, we only need to calculate Qdamping. This is
done using the MATLAB script in Appendix C of [O’Connor, 2018], and the resulting
damping coefficient was 9.877N/m, an additional frictional coefficient of 0.7N/m was
also introduced as it stabilised the simulation model in empirical testing.

The next step is to create models of the tyres. Ideally, the tyres should be simulated
as flexible body objects that can deform as the vehicle is subjected to different forces,
however, Gazebo does not natively offer such functionality. It is possible to use the
rigid body mesh of the tyres of the vehicle as shown in Figure 3.2(a), however, the
complexity of the model will result in a slow simulation with minimal benefits. In-
stead, the author opted to use perfect cylindrical models for the tyres. Similarly to the
procedure in Section 3.3.1, it is needed to find the mass, centre of mass and inertia
matrix. The mass of each wheel is 9.7kg, the centre of mass is fixed at the origin of the
wheel due to its symmetric properties and the inertia matrix is:

I =

0.2476 0 0
0 0.2476 0
0 0 0.4413


2Gazebo joints are an API for robot motor and actuator simulation.

3.3. Simulated vehicle model 27

3.3.3 Tire friction modelling

The next step in the process is to define correct friction models between the tyres and
the ground. Car tyres typically consist of an outer shell of vulcanised rubber covering
multiple layers of wrapped fabric reinforced with metal wire. They are incredibly
complex to simulate and no off-the-shelf Gazebo plugin exists for this purpose, but
simulating tyre dynamics is crucial to the project. For that reason, the author proceeded
to create a custom tyre fiction model based on the Pacejka ”Magic Formula” and brush
model (known as ThreadSim) [Pacejka, 2005]. Below, the author will provide the
background of tyre modelling which was originally authored in [O’Connor, 2018].

Contact forces from the tyre to the plane are transmitted through a ”contact patch”,
however, due to the elastic behaviour of tyres, the contact patch varies greatly depend-
ing on the tyre pressure, load, lateral forces, longitudinal forces amongst other factors.
A simplified analytical model of this called the ”brush model” has been developed and
is used to explain important parameters:

• slip angle α - the angle at which the tyre is orientated. This is the main factor
determining the maximum lateral force a tyre can exert and is described by

α = arctan
(ẋv

ẏv

)
where ẋv is the longitudinal velocity and ẋv is the lateral velocity; both in the
vehicle frame.

• slip ratio λ - as the wheel accelerates there will be a tangential force on the
brushes, causing an extension which increases the circumference of the tyre and
forcing the wheel to turn slower for the same rotational velocity. The slip ratio
is described by:

λ =
re ·ω− ẏv

ẋv
= (

re ·ω
ẋv

)−1

where re is the tyre radius and ω is the tyre rotational speed.

Multiple attempts have been made to model tyre behaviour, amongst which the most
popular one is the Pacejka ”Magic Formula” [Pacejka, 2005] which is derived com-
pletely from empirical results and fits the slip angle to lateral force and slip ratio to
longitudinal force as described by:

y = D · sin(C · arctan(B · x−E(arctanB · x))).

A typical plot of this can be seen in Figure 3.4. 6) Note that this formula holds true
only for dry friction which is assumed in simulation and when running the autonomous
car in the real world. However, the ”Magic Formula” has one major limitation - it does
not hold true when the vehicle is standing still or moving at slow speeds. This is a
well-known issue [Pacejka, 2005]. To overcome this issue the author decided to add a
velocity threshold - when then model (or tyre in this case) is moving at less than the
defined threshold, then simply give the object friction as if it was a rigid object.

28 Chapter 3. Simulation and Integration

The author used this tyre behaviour modelling to create a Gazebo plugin which over-
rides the contact forces of any Gazebo simulation model it is assigned to, in this case,
the tyres of the vehicle. To comply with the standards of Gazebo, this plugin was de-
veloped in C++ with the Boost and Ignition libraries, while ensuring good re-usability.
The plugin is initialised and parameterised within the URDF file3 of the robot model.
The parameters chosen for the Hoosier tyres #43163 used on this vehicle were pro-
vided by the FS Tyre Test Consortium [Kasprzak and Gentz, 2006], an organisation
set up by a number of academics to provide access to high-quality test results for tyres
commonly used in Formula Student competitions. The parameters used are B = 40,
C = 1.6, D = 1.4 and E =−1.2.

This plugin was then tested empirically in simulation and produced odd behaviour,
where the car was sliding sideways constantly after it went above the velocity thresh-
old. This behaviour remained largely unexplained but was most likely due to the
method of computing arctan and it’s well-explored limitations when not provided with
a distinct numerator and denominator4. As this limitation was not the main aim of this
project, the author opted for a less accurate but simple solution - piece-wise linearly
approximating the ”Magic Formula” which is done as shown in Figure 3.4.

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
Slip ratio

1.0

0.5

0.0

0.5

1.0

Fo
rc

e

Pacejka Magic Formula
Magic formula
Piecewise linear approx

Figure 3.4: The Magic Formula and its piece-wise linear approximation

This can again be parameterised with only 4 variables - static slip, dynamic slip, static
friction and dynamic friction as seen in Figure 3.5.

Based on this idea, the Gazebo plugin was then altered and empirically tested by trans-

3In the Gazebo simulation, URDF files are used to describe robot models on a high-level by com-
posing them of multiple sub-modules

4Without access to the exact numerator and denominator, typical arctan functions in most program-
ming languages can only output angles in the first or fourth quadrant, which has inherent limitations.

3.3. Simulated vehicle model 29

0.0 0.2 0.4 0.6 0.8 1.0
Slip ratio

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Fo
rc

e

Pacejka Magic Formula Parametarisation

Magic formula
Piecewise linear approx
Static slip
Dynamic slip
Friction static
Friction dynamic

Figure 3.5: The piece-wise approximation of the Magic Formula for tyre friction.

lating the B, C, D and E parameters to the new parameter format. It is difficult to
validate the performance of this plugin, but when the car was tested in simulation it
was exhibiting behaviour similar to a car such as losing grip around tight corners and
applying hard brakes at high speeds. These actions were not observed when the tyres
were described as rigid body models.

3.3.4 Motors and control

Based on the vehicle setup as described in Section 2.2.2, the author has opted to simu-
late the vehicle control scheme as closely as possible to the real world. The ADS-DV
employs a simplified control procedure. First, the software interface of the vehicle
accepts 2 commands: the desired speed value in m/s and a desired steering angle in
the range [-1, 1]. These commands are then sent to a low-level PID controller which
attempts to achieve the desired commands as swiftly as possible.

To recreate this functionality, it was chosen to implement a ROS node due to better
flexibility and debugging during development in comparison to Gazebo plugins. The
purpose of this ROS node will be to translate the high-level driving commands to ac-
tuator commands which are then sent to Gazebo through the joint contoller ROS
package. The simulated vehicle model is then extended with the addition of:

• 4 Gazebo velocity joints5 (one for each wheel) which simulate an electric mo-
tor with a PID loop. All of these joint interfaces were made identical due to
the fact that the ADS-DV car features symmetrical transmission (Section 2.2.2).
However, no information is available on the PID controller parameters of the
real vehicle, therefore the P, I and D parameters for the simulation were tuned to
offer similar acceleration performance to the ADS-DV.

5Analogous to motors which accepts a desired speed as input.

30 Chapter 3. Simulation and Integration

• 2 Gazebo effort joints6 which simulate the steering actuator that controls the
front wheels of the ADS-DV. However, there is one major difference here - the
simulated model controls each front wheel steering independently. This was cho-
sen due to the difficulty of implementing Ackermann steering as a physical link
in the simulated vehicle model. Instead, the author chose to compute the steering
angle of each wheel independently based on a standard Ackermann model.

Now it is only left to derive the commands for each actuator(joint).

Figure 3.6: Relation between lin-
ear and angular velocities. Source:
Lumen Learning

Speed commands
To translate the desired vehicle speed to wheel
speeds for the actuator it is only needed to trans-
late linear velocity to angular velocity as seen in
Figure 3.6. This is given by the equation:

V = rω

where V is the linear velocity, r is the wheel ra-
dius and ω is the angular velocity. Once angular
velocities are derived, they are sent directly as in-
put commands the actuators of the wheels in the
simulation.

Steering commands
The idea of Ackermann steering is that the inside
wheel should turn slightly sharper, resulting in better grip and control of cars. If α

is defined as the desired steering command, αL and αR as the steering of the left and
right wheel respectively, L as the wheelbase and W as track (width of the car); then on
each turn there exists an Instantaneous Centre of Curvature (ICC) which is the point
of intersection of the rear axle and the perpendiculars of both front wheels as seen in
Figure 3.7.

Figure 3.7: Ackermann steering
model.

The radius R around the ICC can be derived as:

R =
L

tan(α)

with that αL and αR for α > 0 can defined as:

tan(αL) =
L

R−W/2

tan(αR) =
L

R+W/2

which then lead to

αL = arctan
(

L
R−W/2

)
αR = arctan

(
L

R+W/2

)
(3.2)

6Analogous to motors that accept torque values as input.

3.4. Environment modelling 31

A special case not addressed by these equations is when α = 0 as then R becomes
infinite. In that case, we simply set α = αL = αR = 0. Additionally, if α < 0, it is still
possible to use Equations 3.2, however, it is needed to subtract π from both αL and αR.

The final simulated vehicle model is then shown in Figure 3.8.

Figure 3.8: ADS-DV simulation model in Gazebo

3.4 Environment modelling

This section deals with providing the ”cone map” and accurate odometry of the vehicle
to the MPPI algorithm as discussed previously in Section 3.2.

3.4.1 Tracks and map data

To create tracks in Gazebo, the author opted to use the Gazebo Model Editor which
allows creating complex nested models with the standard GUI. Since the circuits in
Formula Student consist of yellow, blue and orange traffic cones (Section 2), it is first
needed to create these models of cones which will then be used to construct full tracks.

As the author of this project is not familiar with CAD, cone meshes were created by
fellow EUFS team member Craig Martin. These were then converted to SDF files7

with correct mass, the centre of mass and inertia matrices using the same procedure as
in Section 3.3.1.

To construct racing tracks in simulation, one would ideally make an algorithm that gen-
erates random tracks based on the specifications in Section 2.1, construct SDF models
in Gazebo and then create a plugin to automatically output the locations of cones in
the world. However, the author deemed this option too complex and distracting from
the overall goal of the project. Instead, it was chosen to manually construct tracks in
Gazebo using the Model Editor GUI and then save them as SDF files. A Python script

7SDF is the standard Gazebo file format for defining simulated environment models.

32 Chapter 3. Simulation and Integration

was then developed to extract the cone locations in a 2D bird’s eye view and save them
as a CSV file. The benefit of this is that the cone locations can now be easily used
and manipulated without directly involving the simulation, as seen later in Section 5.1,
thus tackling the assumption that accurate cone locations are always available.

Two such tracks were constructed as seen in Figure 3.9.

Figure 3.9: small track (left) and big track (right) simulated tracks in Gazebo

3.4.2 Odometry

For any type of model predictive control, it is required to have a representation of the
state of the vehicle. For this project, this takes the shape of the ROS Odometry message
format, which gives you information about the 3D position, orientation, linear velocity,
angular velocity and uncertainty matrices for all of them. This is also the standard
format adopted by the EUFS team, therefore integration with the team’s system is
simplified.

As this project is based on simulation, it is easy to obtain such data about the car.
The author opted to use the p3d base controller Gazebo plugin which outputs ex-
act odometry information relative to the origin of the simulation coordinate frame. It
was also configured to perform similarly to the expected performance of the SBG El-
lipse 2N INS (Appendix B): output odometry estimates at a rate of 200 Hz and induce
Gaussian noise with σ = 0.2 to the position, orientation, linear and angular velocities.

3.5 Visualisation

Robots are complex systems which are difficult to debug in the typical sense of the
word. Therefore, it is important to visualise the outputs modules and algorithms to
ensure correct operation. The ROS ecosystem offers such a tool named RViz, which
can visualise many of the standard message formats. The MPPI source code already
outputs path planning data in the correct format, however, additional information is re-
quired for online debugging. For that purpose, the author developed a ROS node which

3.5. Visualisation 33

collects controller, pose, speed and command data from the simulation and visualises
it as seen in Figure 3.10.

Figure 3.10: RViz visualisation of MPPI running in simulation.

Chapter 4

Model

To deploy the MPPI algorithm, it needs a model of the system dynamics. This is a
well-explored topic, especially for an Ackermann-type car. However, instead of using
traditional methods to identify the system, one can leverage the significant benefit of
MPPI, the fact that it can use purely data-driven models.

In comparison to classical system identification [Kozlowski, 2012], data-driven model
learning does not require hand-tailored equations; instead, machine learning models
can derive them automatically, saving valuable design time. These models also have
the benefit of exploiting non-linear relationships in the system dynamics model. One
might argue that Ackermann-type vehicles are well-understood and straightforward,
therefore a superior model can be handcrafted by an expert without the need for such
black-box approaches; however, the empirical result in [Williams et al., 2017] suggest
the opposite.

For the above reason, the author has chosen to leverage only data-driven models for
this project, and the remainder of this chapter will be focused on learning the dynamics
of the ADS-DV vehicle from the simulation designed in Chapter 3.

4.1 State representation

To forward-sample possible trajectories, the vehicle must be aware of the current posi-
tion and orientation. Since it is a grounded robot, the state space can be limited to the
x-position xw, y-position yw and yaw ψw in the world coordinate frame. These will be
referred to as the kinematic state variables xk and are described:

xk =

xw
yw
ψw

 (4.1)

These variables can be seen in Figure 4.1 along with the associated coordinate frames
of both the world and the vehicle.

35

36 Chapter 4. Model

Figure 4.1: Coordinate frames of the vehicle and the kinematic state variables. Xw and
Yw represent the coordinate frame of the world. Xv and Yv represent the coordinate
frame of the vehicle. xw, yw and ψw are the kinematic state variables.

Given a fixed timestep ∆t, it is possible to form the equation of motion as:

xk(t +1) = xk(t)+k(x)∆t (4.2)

where k(·) gives the change of state for all kinematic state variables in the next timestep.
The easiest method of calculating this is by simply calculating the distance between
xk(t) and xk(t + 1). Distance can easily be obtained with the formula S = Vt where
S is distance, V is velocity and t is time. This means that k(·) must simple derive the
velocities ẋw, ẏw, ψ̇w.

To homogeneously predict dynamics regardless of the absolute position of the car in
the world frame, it is preferred to define the dynamic state in the vehicle frame. Given
the velocities ẋv, ẏv and the heading rate (yaw velocity) ψ̇v in the vehicle frame, then
we can apply an inverse 2D affine transformation to get their equivalents in the world
coordinate frame:

ẋw = cos(ψw)ẋv− sin(ψw)ẏv

ẏw = sin(ψw)ẋv + cos(ψw)ẏv

ψ̇w = ψ̇v

(4.3)

Now that we have all of the velocities in the world coordinate frame, it is straightfor-
ward to define k(·) and plug it back into Equation 4.2.

k(x) =

 ẋw
ẏw
ψ̇w

 (4.4)

4.2. Data 37

Now, it is possible to define the dynamic state variables xd which are defined as the
variables that result in a change of the kinematics. These variables can include many
different physical properties including linear and angular velocities. However, since
the goal of this project is to predict the change of kinematics via the dynamic state
variables ẋv, ẏv and ψ̇, it is possible to also include any other kinematic state variables
that can help in these predictions. Additionally, the control signals sent to the car will
also have an important effect on the dynamics and should also be taken into account
here. Therefore, the equations of motion for xd can be written as:

xd(t +1) = xd(t)+ f(xd,v(t))∆t (4.5)

where v(t) = (u1(t)+ ε1(t),u2(t)+ ε2(t) is the randomly perturbed control input. In
this case u1 is the speed and u2 is the steering of the car; ε is noise. The func-
tion f(·) gives the changes in the dynamic state variables xd 1s ahead of timestep t.
[Williams et al., 2017].

It is finally possible to define the full state space as:

x =

(
ẋk
ẋd

)
(4.6)

where the exact definition of ẋd will be explored later in Section 4.3.

It is finally possible to express the state transition function F(·) introduced in Equation
2.1 by plugging in Equations 4.4 and 4.5:

x(t +1) =
(

xk(t)
xd(t)

)
+

(
k(x(t))

f(xd(t),v(t))

)
∆t (4.7)

The issue here is that f(·) is not trivial to define as it is highly non-linear and dependent
on several different factors. The remainder of this chapter will be focused on estimating
this function using Neural Networks.

4.2 Data

This section deals with data collection, preprocessing and preparing it for learning
algorithms.

4.2.1 Collection

Since the scope of this project is in simulation, kinematics and dynamics data were
collected from the simulation as well. This was done by manually driving the car
in simulation using an Xbox 360 controller while recording both the odometry from

38 Chapter 4. Model

Section 3.4.2 and the controls sent to the vehicle. The data was recorded in a rosbag
which is a convenient tool for recording any data published by ROS.

Data collection in this project suffers from the typical problems of system identifica-
tion, where one would like the data to explore as much as possible from the state space
as possible [Kozlowski, 2012]. For that reason, one should carefully consider the state
representation used, how the vehicle can be controlled to explore as much as possible
from the state space and distribute data over the whole state space range. Inspired
by the original work on MPPI [Williams et al., 2017], here the author has adopted the
following data collection procedure:

1. Slow driving (3 - 9 m/s) around the track.
2. Zig-zag manoeuvres at slow speeds (3 - 6 m/s).
3. Aggressive driving, attempting to set the fastest lap times, while not hitting any

cones. Average speed 12 m/s.
4. Gradually accelerating to 15 m/s and then gradually decelerating into random

turns.
5. Full speed acceleration to 15 m/s and then stopping as fast as possible and occa-

sionally sliding.
6. Driving in the figure of 8 from Section 2.1 as fast as possible. Involves significant

sliding.

Manoeuvres in points 1-3 are performed for 3 minutes one way around the track and
3 minutes the other way around a track. Manoeuvres 4-6 are performed for 5 minutes
each.

Using this procedure, a dataset was collected in simulation, and a pair plot was used to
validate adequate state space exploration (seen in Figure 4.2). Noteworthy points:

1. The control variables are explored excellently.
2. There seems to be a bias towards positive values of ẏv. This might be possible

due to outliers within the dataset, which have resulted from extreme sliding at
high speeds (pairwise between ẋv and ẏv). Since this is an outlier, hopefully it
should not disturb later work and the models should learn to ignore it.

3. The speed command and ẋv are biased towards positive values. This is to be
expected since the car is moving forward the majority of the time.

4.2.2 Processing

The data type collected from the simulation is shown below in Table 4.1. Both the
odometry and control data have timestamps accurate to 1 ns. The odometry data is in
the world-frame.

The goal here is to preserve as much of the original data as possible as the author later
intends to experiment with the variables to identify which combination of them results
in the best dynamics prediction.

4.2. Data 39

Figure 4.2: Both axis contain all dynamic state variables and control commands. Plots
on the diagonal show the distribution of each of the 5 variables. The denser a plot is, the
better the state space is explored. u x and u y are ẋv and ẏv respectively; twist yaw
is the heading rate ψ̇.

Data processing was done with Python as it offers easy methods of loading rosbag
data3.

Data matching
The odometry and control data come from different sources and as such their times-
tamps are not matched as seen in Table 4.2. This can easily be solved with a full
outer database join, which matched the row of our dataset; results can be seen in Ta-
ble 4.3. However, the outer join operation also produces data entries with duplicated
timestamps.

3rosbag data was loaded with the python package rosbag pandas

40 Chapter 4. Model

odometry1

pose
pose

position
x
y
z

orientation

x
y
z
w

covariance

twist
twist

linear
x
y
z

angular
x
y
z

covariance

control2 speed
steering

Table 4.1: Data type and format collected from simulation. Twist is the ROS name for
velocities.

Data interpolation
The data types are collected come at different rates - 200 Hz and 50 Hz for odometry
and control respectively. Ideally, we want to get as dense and accurate data as possible.
From Chapter 3, we know that once a control command is sent to the car, it keeps
executing it until it receives another command. Therefore, it is possible to piece-wise
interpolate the control data to 200 Hz. Afterwards, it is also easy to remove rows with
duplicated timestamps. The results of this is shown in Table 4.4.

Data re-sampling
Now that we have dense, high-frequency dataset, it is finally possible to re-sample the
dataset to the running rate of the MPPI algorithm. For the purposes of this report, the
controller is running at 50 Hz, which gives us a timestep of ∆t = 1/50 = 0.02s. The
re-sampled data is shown in Table 4.5. Additionally, the data timestamps were reset to
start from t = 0 for convenience.

Please note that the data shown in the tables of this section is only part of all data
collected. Most columns from the tables are omitted for brevity and simplicity.

The dataset is now fully reconstructed and it can be altered into the correct format for
learning.

Quaternion to Euler conversion
The orientation data collected is in the quaternion format4 as it is the standard in ROS
and address some of the issues of Euler angles5. However, those issues do not affect the

4Quaternions are an alternative method of representing angles with complex numbers.
5Euler angle representations suffer from the problem known as Gimbal lock. This occurs when two

of the three gimbals are driven into a parallel configuration, locking the rotation into only 2D space

4.2. Data 41

timestamp speed steering pose x pose y twist x

00:02:28.545000 NaN NaN -57.505946 -3.786475 3.561731
00:02:28.545000 0.0 -0.005867 NaN NaN NaN
00:02:28.550000 NaN NaN -57.488142 -3.788593 3.560210
00:02:28.555000 NaN NaN -57.470346 -3.790711 3.558706
00:02:28.560000 NaN NaN -57.452557 -3.792829 3.557174
00:02:28.565000 NaN NaN -57.434775 -3.794947 3.555681
00:02:28.565000 0.0 -0.005867 NaN NaN NaN
00:02:28.570000 NaN NaN -57.417002 -3.797064 3.554153
00:02:28.575000 NaN NaN -57.399235 -3.799181 3.552597
00:02:28.580000 NaN NaN -57.381477 -3.801298 3.551097

Table 4.2: Raw dataset obtained from a rosbag. Only first 10 entries shown.

timestamp speed steering pose x pose y twist x

00:02:28.545000 NaN NaN -57.505946 -3.786475 3.561731
00:02:28.545000 0.0 -0.005867 -57.505946 -3.786475 3.561731
00:02:28.545000 0.0 -0.005867 NaN NaN NaN
00:02:28.550000 NaN NaN -57.488142 -3.788593 3.560210
00:02:28.555000 NaN NaN -57.470346 -3.790711 3.558706
00:02:28.560000 NaN NaN -57.452557 -3.792829 3.557174
00:02:28.565000 NaN NaN -57.434775 -3.794947 3.555681
00:02:28.565000 0.0 -0.005867 -57.434775 -3.794947 3.555681
00:02:28.570000 NaN NaN -57.417002 -3.797064 3.554153
00:02:28.575000 NaN NaN -57.399235 -3.799181 3.552597

Table 4.3: Dataset from Table 4.2 after an outer join. Only first 10 entries shown.

timestamp speed steering pose x pose y twist x

00:02:28.545000 0.0 -0.005867 -57.505946 -3.786475 3.561731
00:02:28.550000 0.0 -0.005867 -57.488142 -3.788593 3.560210
00:02:28.555000 0.0 -0.005867 -57.470346 -3.790711 3.558706
00:02:28.560000 0.0 -0.005867 -57.452557 -3.792829 3.557174
00:02:28.565000 0.0 -0.005867 -57.434775 -3.794947 3.555681
00:02:28.565000 0.0 -0.005867 -57.434775 -3.794947 3.555681
00:02:28.570000 0.0 -0.005867 -57.417002 -3.797064 3.554153
00:02:28.575000 0.0 -0.005867 -57.399235 -3.799181 3.552597
00:02:28.580000 0.0 -0.005867 -57.381477 -3.801298 3.551097
00:02:28.585000 0.0 -0.005867 -57.363726 -3.803415 3.549587

Table 4.4: Dataset from Table 4.3 with the speed and steering columns now interpolated
to match the data rate of the rest of the columns. Only first 10 entries shown.

dynamics prediction; therefore it is simpler and easier to use Euler angles. To convert

42 Chapter 4. Model

timestamp speed steering pose x pose y twist x

00:00:00 0.0 -0.005867 -57.505946 -3.786475 3.561731
00:00:00.020000 0.0 -0.005867 -57.434775 -3.794947 3.555681
00:00:00.040000 0.0 -0.005867 -57.363726 -3.803415 3.549587
00:00:00.060000 0.0 -0.005867 -57.292798 -3.811878 3.543533
00:00:00.080000 0.0 -0.005867 -57.221991 -3.820338 3.537498
00:00:00.100000 0.0 -0.005867 -57.151304 -3.828791 3.531439
00:00:00.120000 0.0 -0.005867 -57.080739 -3.837237 3.525438
00:00:00.140000 0.0 -0.005867 -57.010293 -3.845674 3.519429
00:00:00.160000 0.0 -0.005867 -56.939967 -3.854101 3.513418
00:00:00.180000 0.0 -0.005867 -56.869761 -3.862515 3.507472

Table 4.5: The dataset re-sampled to the correct frequency (50 Hz). Only first 10 entries
shown.

the angles, the 1-2-3 Euler angle conversion was used. If the quaternion angles are
represented with x, y, z and w then:

φ = tan−1
(

2zw+2xy
w2− z2− y2 + x2

)
θ =−sin−1 (2yw−2xz

)
ψ = tan−1

(
2yz+2xw

y2 + x2− z2−w2

) (4.8)

This conversion is not needed for the angular velocities, as they already are in Euler
angles6.

Roll and pitch detection
During aggressive driving data collection, it frequently happened that the car rolled
over while attempting to corner. Usually, this would render the whole dataset collected
until that point useless. To avoid that, the author incorporated bad roll and pitch detec-
tion which checks the data for |φv|> 40° and |θv|> 20°. If such data is found then, the
user is warned and given the option to remove that data and any other data following
it. This has the benefit of utilising previously unusable datasets, reducing the cost of
collecting bootstrapping data.

Vehicle frame velocities
The velocities of the car are needed in the vehicle frame for Equation 4.5, then it is
needed to convert ẋw and ẏw from the dataset into ẋv and ẋv. This is done by simply
applying a 2D rotation matrix which results in:

ẋv = cos(ψ)ẋw + sin(ψ)ẏw

ẏv =−sin(ψ)ẋw + cos(ψ)ẏw
(4.9)

6ROS documentation for the odometry message type - http://docs.ros.org/melodic/api/nav_
msgs/html/msg/Odometry.html

http://docs.ros.org/melodic/api/nav_msgs/html/msg/Odometry.html
http://docs.ros.org/melodic/api/nav_msgs/html/msg/Odometry.html

4.2. Data 43

A plot is used to verify the correct conversion - Figure 4.3.

15 10 5 0 5 10 15
Longitudinal

15

10

5

0

5

10

15

La
te

ra
l

GG plot of world-frame velicities

15 10 5 0 5 10 15
Longitudinal

15

10

5

0

5

10

15

La
te

ra
l

GG plot of vehicle-frame velicities

Figure 4.3: Plot of the velocities in the vehicle frame. Longitudinal and lateral velocities
are ẋv and ẏv respectively.

0.06

0.04

0.02

0.00

0.02

0.04

roll

7.0

7.5

8.0

8.5

9.0

9.5
u_x

1.00
0.75
0.50
0.25
0.00
0.25
0.50

u_y

0.5

0.0

0.5

1.0

1.5
twist_yaw

0.50

0.25

0.00

0.25

0.50

0.75

steering

0.4

0.2

0.0

0.2

0.4

0.6

0.8
speed

0.06

0.04

0.02

0.00

0.02

0.04
smoothed roll

7.0

7.5

8.0

8.5

9.0

smoothed u_x

1.0

0.5

0.0

0.5
smoothed u_y

0.5

0.0

0.5

1.0

1.5
smoothed twist_yaw

0.50

0.25

0.00

0.25

0.50

0.75

smoothed steering

0.4

0.2

0.0

0.2

0.4

0.6

0.8
smoothed speed

Smoothing of odometry and control data

Figure 4.4: Data plotted against 2s of time. Top two rows show the raw data, whereas
the bottom two rows are the smoothed version. Note this only shows part of the full
dataset. u x is forward velocity in the vehicle frame, u y is lateral velocity in the vehicle
frame, twist yaw is the heading rate.

44 Chapter 4. Model

Data smoothing
One of the issues with the data collection process is the noise from the physical con-
troller and the noise induced by the odometry simulation (Section 3.4). Empirical
results suggest that this noise significantly decreases the ability of neural networks to
learn the dynamics of the car accurately. As suggested by Grady Williams, one of
the authors of MPPI, the collected data was smoothed with one-dimensional splines fit
through time. This can be seen in Figure 4.4. The scipy spline library7 was used for
this with an empirically estimated smoothing factor s = σ/10 where σ is the standard
deviation for each data column.

Dynamic State Variables MSE

ẋ, ẏ, ψ̇ 2.8815
ẋ, ẏ, ψ̇, φ 1.5916
ẋ, ẏ, ψ̇, θ 2.5183
ẋ, ẏ, ψ̇, ψ 2.7266
ẋ, ẏ, ψ̇, φ̇ 2.7371
ẋ, ẏ, ψ̇, φ , θ 2.7786
ẋ, ẏ, ψ̇, φ , ψ 2.3529
ẋ, ẏ, ψ̇, φ , φ̇ 2.3484
ẋ, ẏ, ψ̇, φ , θ̇ 2.4891
ẋ, ẏ, ψ̇, θ, ψ 2.7267
ẋ, ẏ, ψ̇, θ, φ̇ 2.7724
ẋ, ẏ, ψ̇, θ, θ̇ 2.7666
ẋ, ẏ, ψ̇, ψ, φ̇ 2.8512
ẋ, ẏ, ψ̇, φ , θ, θ̇ 2.4802
ẋ, ẏ, ψ̇, ψ, φ̇, θ̇ 2.8883
ẋ, ẏ, ψ̇, φ , θ, ψ, θ̇ 2.6387
ẋ, ẏ, ψ̇, φ , θ, ψ, φ̇ 2.5487
ẋ, ẏ, ψ̇, φ , θ, ψ, φ̇ 2.7914
ẋ, ẏ, ψ̇, φ , θ, ψ, φ̇, θ̇ 2.7342
ẋ, ẏ, ψ̇, ψ, θ̇ 2.8749
ẋ, ẏ, ψ̇, φ̇ , θ̇ 2.7725
ẋ, ẏ, ψ̇, φ , θ, ψ 2.4032
ẋ, ẏ, ψ̇, φ , θ, φ̇ 2.3587
ẋ, ẏ, ψ̇, θ, ψ, φ̇ 2.8040
ẋ, ẏ, ψ̇, θ, ψ, θ̇ 2.9034
ẋ, ẏ, ψ̇, φ , θ, φ̇ , θ̇ 2.6430

Table 4.6: Training of different NN
for identifying the best dynamics
representation. All variables here
are in the vehicle-frame.

Data preparation for learning
To use the data for machine learning, it must be
shaped into the correct format. Keeping to the
standard notation, the inputs are defined as:

X(t) =
(
xd(t),v(t)

)
Then, the targets are defined as:

Y(t) =
(
X(t +∆t)−X(t)

)
∆t

∆t is needed in this case to scale up the outputs
into a suitable range. Without that, the targets
have low magnitude which decreases the perfor-
mance of NN.

4.3 Dynamic variables identifi-
cation

Although Ackermann-type vehicle dynamics are
well explored, they still remain highly non-linear
systems which are difficult to identify. This sec-
tion will focus on exploring how to best represent
the dynamic state variables xd . From Section 4.1,
Equation 4.5, it is known that at least ẋv, ẏv and
ψ̇v are needed, which will now be called the base
dynamic state variables. Additionally, it is pos-
sible to extend xd with all other kinematics and
dynamic state variables.

It is possible to analyse which dynamics variables
to include with classical dynamics analysis. How-
ever, since this project utilises NN to learn the dy-
namics for this project, it is possible to identify

7Scipy is one of the most popular packages for Python, which adds a wide set tools for scientific
computing. Its interpolation module provides an easy to use splining and smoothing toolset.

4.4. Learning dynamics 45

the most appropriate dynamic state variables by training several networks and empiri-
cally analyse their performance. This black-box approach allows for rapid testing and
evaluation of several different state representations and identifying the best one.

Experiments were set up using PyTorch8 and a big neural network with 2 hidden layers
of 128 neurons each was used which allows for learning complex non-linearities even
with all possible dynamic state variables. All combinations of state variables were
explored as inputs and outputs to the network. However, results are calculated only by
finding the Mean Square Error (MSE) between the base dynamic state variables. All
hyper-parameters used for these experiments are presented in Appendix C.

From the results in the Table 4.6, it can be seen that that the best variables for xd are
ẋv, ẏv, ψ̇ and φ. Coincidentally, these are the same dynamic state variables used in
[Williams et al., 2016] [Williams et al., 2017]; however, the choice in those papers is
justified by classical dynamics system identification. This proves that neural networks
are capable of identifying dynamic state variables without requiring costly develop-
ment time and hand-analysing dynamic systems.

4.4 Learning dynamics

The focus of this section is to explore learning the dynamics of the vehicle with neural
networks. Throughout this section fully-connected Neural Networks will be referred
to as NN for brevity.

4.4.1 Framework

Machine learning is still a relatively young field, and as such, no standardised full tool-
set has been developed. However, as it was found throughout the development of this
project, that a capable and feature-rich framework is key to fast development, evalu-
ation and storing reproducible results. For that reason, the author has progressively
developed the sysid dynamics learning framework, based on Python and PyTorch.

Instead of listing the functionality of the framework, an outline of a typical experiment
process for a NN is provided below:

1. Each experiment is automatically labelled with a timestamp. Names have the
format system id net,[timestamp].

2. The preprocessed data from Section 4.2 shaped into the correct format for learn-
ing and converted into PyTorch tensors. At this point, the user can select which
data columns he would like to use as well as specify ∆t. Then target outputs
Y are generated, and the user also has the option to normalise the data. It is
possible to load multiple datasets and combine them into one for training..

8PyTorch is one of the most popular modern machine learning tool-kits which is specialised towards
neural networks

46 Chapter 4. Model

3. The dataset is then split into training, validation and testing sets.

4. An NN model is then created by specifying the number of inputs, number of
outputs, number of hidden layers and their dimensions, whether to use bias pa-
rameters and the choice of activation functions.

5. The experiment is started be specifying the number of epochs, batch size, the
optimiser (RMSProp or Adam), the learning rate and weight decay factor.

6. An experiment folder is automatically generated, and all hyper-parameters are
saved in a YAML file. On every epoch, the model is evaluated on the full training
and validation sets, errors and the model itself are saved within the experiment
folder.

7. At the end of the experiment, all errors on every epoch are saved as a statistic
,and a plot is generated plotting testing and validation errors against epochs.

8. The model with the lowest validation error is selected as the best model and is
evaluated on the test set.

9. The best model is then loaded into the simulation and automatically tested for
five laps against small track (Section 3.4.1). Average lap times are then saved
within the experiments folder. If the car takes more than 1 minute to complete
a lap, then it is labelled as a failed model as it most likely has went outside the
track. Note: the first lap of evaluation is discarded as the car starts from a full
stop.

All of this functionality is embedded into the files sysid datasets.py, sysid models.py
and sysid framework.py. Then they are combined in a high-level script which con-
trol all of the hyper-parameters - NN training.py.

4.4.2 Setting a Baseline

Before running any serious machine learning experiments, it is vital to set a base-
line to which all further experiments can be compared. Since this project is based on
previous work, a reasonable baseline can be set by reproducing the NN of the paper
[Williams et al., 2017].

The hyper-parameters used for this are:

• 2 fully-connected hidden layers with 32 neurons with biases.
• tanh activation function.
• No normalisation.
• RMSProp optimiser with learning rate 10−3, α = 0.99, ε = 10−8 and L2 weight

normalisation wd = 10−6 [Tieleman and Hinton, 2012].
• 1000 epochs with batch size 100.
• 80% /10% /10% train/validation/test dataset split.

Results from this experiment are seen in Table 4.7 and Figure 4.5. The hyper-parameters
used here will be considered the default ones for all future experiments.

4.4. Learning dynamics 47

Best epoch index Best val error Average lap time

325 1.2519 11.07 ± .14

Table 4.7: Baseline NN results. Lap time is averaged over 5 laps of small track. The
standard deviation for the lap times is also given.

0 50 100 150 200 250 300
Epoch number

1.5

2.0

2.5

3.0

Lo
ss

train_loss
val_loss

Figure 4.5: Training and validation error plotted against epochs for the baseline neural
network.

4.4.3 Neural Network Experiments

With the automatic framework developed in the last section, a series of experiments
were tailored and left them running for long periods of time. A common random seed
was used in all experiments to guarantee reproducible results. Select hyper-parameters
and their effects on learning will be explored below.

Network architecture
The choice of this is always an open question in the field of machine learning. In prin-
ciple, the bigger the network, the more complex functions it can learn; however, in the
case of this project, computational time must also be taken into account. The primary
benefit of NNs in the context of dynamics is that they can learn non-linearities, how-
ever, for that to work, a minimum of two hidden layers are needed. On the other hand,
more than three hidden layers introduce heavy computational requirements. With that
in mind, the author chose to explore hidden layers of dimensions seen in Table 4.8,
results shown are the ones for the hyper-parameters that achieved the best results with
not normalised data. Although less complex networks achieve larger validation errors,
they produce good results. However, that is only true, when they manage to finish laps
at all as they also have higher failure rates. Therefore the NN architecture that strikes
a good balance between lap time, low computational complexity and low failure rates
is the one with two hidden layers with 48 neurons each.

Evaluation metrics
Given the results previously shown in Table 4.8, a keen reader would naturally ask the
question whether the two main evaluation metrics - validation error and lap times are

48 Chapter 4. Model

Hidden layer
size

Number of
multiplications

Best epoch
index

Best validation
error

Average
lap time

Failure
rate

8, 8 1536 953 1.6203 10.90 ± .10 37.5%
16, 16 6144 999 1.3861 10.97 ± .07 37.5%
32, 32 24576 983 1.3521 10.89 ± .11 25%
48, 48 55296 496 1.191 11.07 ± .04 12.5%
64, 64 98304 996 1.2496 11.08 ± .04 12.5%
8, 8, 8 12288 859 1.423 10.72 ± .12 37.5%
8, 16, 8 24576 641 1.4751 10.91 ± .15 25%
8, 16, 16 49152 993 1.3766 10.78 ± .09 12.5%
16, 16, 16 98304 993 1.3730 11.01 ± .16 25%
16, 32, 16 196608 998 1,3387 10.88 ± .14 25%
32, 32, 32 786432 995 1.2710 10.81 ± .10 12.5%

Table 4.8: Analysis of different NN architectures. The number of multiplications refers
to the number of multiplications required to execute one forward propagation for the
network (a crude measure of computational complexity). Lap time is averaged over five
laps. The failure rate is defined by the percentage of time the car steers off the track.

correlated at all. To aid exploration of this question, Figure 4.6 plots validation loss
against lap time. From it, one can derive that there is virtually no correlation, which is
further confirmed by the derived Pearson correlation coefficient −0.08359.

11.0 11.5 12.0 12.5
Average lap time

1.1

1.2

1.3

1.4

1.5

1.6

Va
lid

at
io

n
lo

ss

Correlation check between lap time and error

Figure 4.6: Investigating possible correlation between validation loss and lap times.
This uses data of all experiments without data normalisation.

In this case, what is the correct evaluation metric? Well, both are correct in their
own right. The validation loss is the absolute best metric, given the dataset provided,

9Correlation close to 0 means that there is no correlation between the variables.

4.4. Learning dynamics 49

however, as the model is trying to learn a high-dimensional continuous state space,
the dataset used is only a fraction of the full state space. Ideally, one would obtain a
dataset that is representative of the full state space; however, that is difficult and costly,
especially in the real world when dealing with real hardware. On the other hand, the
average lap time metric is even more empirical. In theory, this should be the best
metric for the given task; however, this is also prone to issues. The MPPI algorithm is
not trying to minimise lap times directly, it is trying to reduce lap times while aiming
to minimise its cost function (covered in Chapter 5) which also ensures that the car
stays on track. In the cases of dynamic models with high validation losses but good
lap times, this is usually the result of the vehicle attempting risky manoeuvres, which
might decrease lap time but also pose the risk of throwing the car outside of the track.

In conclusion, there is no single best evaluation metric to be used for the dynamics
model; therefore the author has chosen to use both.

Activation function
The most popular activation functions in NN are the linear, sigmoid, hyperbolic tangent
(tanh) and ReLU activation functions as shown in Figure 4.7. Since both the inputs and
outputs of the NNs used in this project are symmetric and do not follow the classical
meaning of activation functions10, learning dynamics requires a symmetrical activation
function along the x and y axis. This immediately rules out the sigmoid and ReLU
activation functions. The linear activation function is usually not used within hidden
layers as it results in exploding gradients. Thus, I have opted to use the tanh activation
function for all hidden layers and the linear activation function for the output layers.

4 3 2 1 0 1 2 3 4
x

1.0

0.5

0.0

0.5

1.0

a(
x)

Comparison of activation functions
linear
sigmoid
tanh
ReLU

Figure 4.7: Common activation functions used in neural networks.

Learning rule
In this project I have considered the two most popular learning rules - RMSProp
[Tieleman and Hinton, 2012] and Adam [Kingma and Ba, 2014]. Both of these are ran
for every different NN architecture considered above with varying learning rates. RM-
SProp was used with L2 weight normalisation of wd = 10−6, α = 0.99 and ε = 10−8.

10Usually, activation functions are ”turned on” by a certain combination of inputs, otherwise, they
remain inactive.

50 Chapter 4. Model

Adam was used with L2 weight normalisation of wd = 10−6, β1 = 0.9, β2 = 0.999 and
ε = 10−8. Results were overall similar across the different NN architectures; an ex-
ample of those for the network with two hidden layers of 48 neurons each is shown in
Figure 4.8. Adam is faster to converge in most cases and therefore will be the proffered
option throughout this report.

0 200 400 600 800 1000
Epoch number

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Va
lid

at
io

n
Lo

ss

Comparison of learning rules on a NN with 2 hidden layers of 48 neurons each

Adam, lr=0.005
RMSProp, lr=0.005
Adam, lr=0.001
RMSProp, lr=0.001
Adam, lr=0.0005
RMSProp, lr=0.0005
Adam, lr=0.0001
RMSProp, lr=0.0001

Figure 4.8: RMSProp and Adam learning rules compared with different learning rates.
Plots are smoothed for readability.

Normalisation
This is entirely standard when it comes to the field of machine learning. Normalisation
allows neural networks to take into account all input variables equally [Renals, 2018].
However, an interesting observation is that in the original work on MPPI [Williams et al., 2017]
no normalisation was used.

Adding normalisation to the dynamics learning is not trivial as it is difficult to estimate
the overall range of the dynamic variables since the dataset obtained is not necessarily
a representative of the full state space. Regardless, the author chose to normalise every
dynamic state input according to:

x̂i =
xi−mean(xi)

std(xi)

The steering was left as is since it is already in unit scale. The speed command was
scaled down by 15 to be within the range [-1, 1].

This normalisation was also implemented within the CUDA source code to validate
lap time performance. To simplify the process, the author created a custom NN model
saving structure in an NPZ compressed format. The saved model consists of full details
of the normalisation which are then loaded in CUDA and then all input variables are
normalised in parallel on each NN forward-propagation

Then the same experiments as in Table 4.8 are run but now with normalised data. From
the results in Table 4.9, it can be seen that the validation error is reduced across the

4.4. Learning dynamics 51

board which should in theory translate to better performance but average lap times
are slightly worse. However, the failure rates reveal a different picture - they are all
significantly reduced, with most two hidden layer networks having a perfect 0% failure
rate. Normalisation has appeared to stabilise the dynamics models and has made them
significantly more consistent, which is of immense value.

Hidden layer
size

Number of
multiplications

Best epoch
index

Best validation
error

Average
lap time

Failure
rate

8, 8 1536 764 1.3469 10.89 ± .09 25%
16, 16 6144 985 1.2142 10.98 ± .09 25%
32, 32 24576 974 1.1975 10.89 ± .09 0%
48, 48 55296 977 1.1586 10.85 ± .05 0%
64, 64 98304 952 1.1209 11.14 ± .18 0%
8, 8, 8 12288 523 1.3154 10.98 ± .09 0%
8, 16, 8 24576 960 1.2679 11.18 ± .21 25%
8, 16, 16 49152 987 1.2304 11.18 ± .11 25%
16, 16, 16 98304 982 1.2481 11.14 ± .09 16.7%
16, 32, 16 196608 940 1,1476 11.12 ± .17 25%
32, 32, 32 786432 820 1.1316 10.91 ± .07 16.7%

Table 4.9: Analysis of different NN architectures with normalised input variables. The
number of multiplications refers to the number of multiplications required to execute one
forward propagation for the network (a crude measure of computational complexity).
Lap time is averaged over five laps. The failure rate is defined by the percentage of
time the car steers off the track.

Best model
In conclusion to this subsection, The best model identified achieves a validation error
of 1.1586 and an average lap time 10.85 s. The hyper-parameters used for this model
are:

• Name: system id net,2019-02-20T05:57:26.263482

• 2 fully-connected hidden layers with 48 neurons with biases.

• tanh activation function for the hidden layers.

• With normalisation.

• Adam optimiser with learning rate 10−4.

• 1000 epochs with batch size 100.

• 80% /10% /10% train/validation/test dataset split.

All of the dynamics models in this section were evaluated using the MPPI algorithm.
As the cost function of the algorithm was not yet explored at the time of writing this,
the standard cost function available in the Autorally repository was used. A more
detailed exploration of this can be found in Appendix C along from full results from
the experiments of this section.

52 Chapter 4. Model

4.4.4 Online learning

A fairly obvious improvement that can be made on the work in [Williams et al., 2017]
is to add online learning. It is still possible to bootstrap the dynamics model with a
dataset and train it online; then when the MPPI algorithm is running, it can improve its
model of the dynamics online. In theory, this sounded perfect. If the car is currently in
xt , on timestep t, the car will plan a trajectory and predict x̂t+1; then when it reaches
t + 1, it can compare the real state xt+1 and the prediction it made x̂t+1. With that, it
can backpropagate through the neural network and further optimise it.

The author proceeded to implement this into the source code provided by GeorgiaTech.
To ensure real-time performance, it had to be implemented in CUDA, which proved a
considerable challenge due to the lack of experience with the language. In particular,
the author implemented the mean square loss computation, the gradient computation
and the actual backpropagation through the network. Although better results were
thus far obtained with the Adam optimiser, it was decided to implement the RMSProp
optimiser for the online learning task as it is simpler. Default hyper-parameters were
used for it with L2 weight normalisation wd = 10−6. For debugging purposes, a model
saving feature was also added which saved the model on every 100 timesteps, with the
idea to use those models to evaluate results.

An experiment was then set up using the best-trained model from the previous section
as a bootstrapping dynamics model. Then the car was left to drive around small track
for 20 laps. Knowing that each lap on average takes 11s to complete, this resulted
in 129 new models saved. These models were then loaded and analysed with the
validation dataset used in the previous section. Results are shown in Figure 4.9 hint that
no further improvement occurs and in some cases, lap times are reduced in comparison
to the same model without online learning.

0 20 40 60 80 100 120
Model index

1.160

1.165

1.170

1.175

1.180

Va
lid

at
io

n
lo

ss

Model loss on validation set during online learning

0 5 10 15
Number of lap

10.8

11.0

11.2

11.4

La
p

tim
e

Lap time comparison
No online learning
With online learning

Figure 4.9: Performance of online learning. Left plot is smoothed.

The best reasoning for this behaviour is that the model continues to overfit as it is
learning online; however, without a validation set to be evaluated on, the model can
now overfit indefinitely. This behaviour is not the worst case of overfitting as the
vehicle is always exploring different state space. However, this results in oscillating
and unpredictable behaviour, which is undesirable. No solution to this problem that
can run in real-time without affecting the performance of the algorithm was found;
thus online learning was abandoned as an idea.

Chapter 5

Cost

Referring back to Figure 3.1, the costs are an essential part of the MPPI algorithm.
This chapter will focus on optimising the cost for this project; however, unlike the
previous chapter, here the focus will be on achieving a reliable working system, instead
of exploring possible improvements of the basis of this project. The best model found
in the previous chapter will be used throughout this chapter.

Interestingly, the cost functions reported in all of the MPPI papers does not match the
source code available in the online repository. For this project, the cost function is
based on the one found in the repository, which takes the shape of:

Cost = α1Ctrack +α2Ccontrol +α3Cspeed +Ccrash (5.1)

5.1 Costmap

The costmap as represented in [Williams et al., 2017] is a 2D grayscale image which
has 0 value in the centre of the track which gradually increases to 1 at the edge of the
track. The pixel values outside of the track are 100. As the image is a discrete data
structure, it needs to be interpolated so that it fits in the continuous state space of the
problem. Then the cost of the vehicle is computed as the average of track cost of the
front of the car and the track cost at the rear of the car. Figure 5.2(c) shows an example.

To create a costmap for this project, the author reverse-engineered the costmaps avail-
able on the Autorally repository. A Python tool was implemented for loading different
Formula Student tracks (either from CSV or SDF files) and generating costmaps given
parameters.

Track plotting
From Section 3.4, CSV files which define the locations of cones within the track are
available. Afterwards, midpoints are generated by iterating over every left (blue) cone
and finding the closest yellow point to it; then a midpoint is generated by averaging
their x and y coordinates.

53

54 Chapter 5. Cost

Before making a complete costmap, it is first needed to interpolate the track boundaries
since the cones are sparse. This can be done piece-wise but produces bad results;
instead, it was necessary to smooth to track boundaries using the scipy spline library.
However, for this to work the cones must be sequentially ordered, which is not the
case by default. To ensure correct order, an iterative closest point ordering algorithm
was developed (Algorithm 2). Afterwards, a cubic spline is piece-wise fit through all
ordered points with a smoothing factor of s = 1. This procedure is also done for the
midpoints of the track. The final plotted result is seen in Figure 5.1. It is evident why
smoothing is required.

Algorithm 2: Iterative closest point ordering
1 Given: X sequence of N points xi where i = 1,2,3..N
2 Initialise: empty array Y for already ordered points
3 for xi in X do
4 p← find closest(xi, X)
5 Append p to Y
6 Remove p from X
7 end

30 20 10 0 10 20 30
20

15

10

5

0

5

10

15

20

Figure 5.1: A plot of the interpolated track boundaries for small track. Blue and yel-
low points represent cones; green points represent midpoints between the closest
blue/yellow pairs. The lines are cubic splines fit through the points.

Costmap generation
The costmap must be saved in the correct format so that it is accepted in the Autorally
source code, which accepts an NPZ file1 with the keys from Table 5.1.

The process of creating the costmap is the following:

1. xBounds and yBounds are created by identifying the absolute maximum and
minimum values along both x and y dimensions. Padding of 10 meters is also
added to ensure that the track is always contained within the image.

1NPZ is a standard file for saving compressed data in NumPy. It has the structure of a disctionary

5.1. Costmap 55

Key Description Example

xBounds X limits of the track [-25.0 10.0]
yBounds Y limits of the track [-15.0 20.0]
pixelsPerMeter Number of pixels to be read per pixel [20.0]
channel3 pixel values [0. 0. 0. . . . 0.]
channel2 pixel values [0. 0. 0. . . . 0.]
channel1 pixel values [0. 0. 0. . . . 0.]
channel0 pixel values [0. 0. 0. . . . 0.]

Table 5.1: The parameters and example values of a costmap used with the Autorally
source code.

(a) Outline of track (b) Distance transformed (c) Final costmap

Figure 5.2: The process of creating a costmap

2. Since images have only positive values in their coordinates, the track boundaries
and midline are shifted so that they are centred in the image coordinate frame.
The track boundaries and midline are then scaled by the pixelsPerMeter param-
eter required for the costmap.

3. A blank white image with the correct dimensions is created.

4. The pixels corresponding to the track boundaries are set to 255. Figure 5.2(a).

5. A Huber distance transform2 is then performed which results in smooth gradients
extending outwards from both track boundaries. Figure 5.2(b).

6. Map the areas outside of the track and set them to 0.

7. Invert the image and normalise it in unit range [0, 1].

8. Set the areas outside of the track to pixel value 100. Costmap now finished -
Figure 5.2(c).

Although the above process can be parameterised and optimised, that strategy is not the
best as it requires offline changes to the costmap. On the other hand, such parameters
can be embedded in the computation of the cost function during the MPPI optimisation.

2https://en.wikipedia.org/wiki/Huber_loss

https://en.wikipedia.org/wiki/Huber_loss

56 Chapter 5. Cost

Costmap calculation
Now that there is a costamp, it is finally possible to compute the cost of the car being
in a certain position within the track Ctrack. In [Williams et al., 2017] this is done by
calculating the value of the costmap under the centre of mass of the vehicle. This
strategy did not produce good results in the case of this project - when the car was
pressed to achieve a faster speed, it started diving into corners3 and inevitably hits the
cones of the track boundary. From the perspective of MPPI, this is completely valid
behaviour as it is not completely aware of the dimensions of the vehicle.

To address this issue, the author altered the calculation of Ctrack to take into account
the dimensions of the car. This is best explained by Figure 5.3. The parameter α1 is
left to be parametarised when MPPI is running.

Figure 5.3: Dimensional calculation of track cost.

Experiments were run to compare the results of both track cost methods. Cost param-
eters used were Vdes = 12m/s, α1 = 300, α2 = 0 and α3 = 4.25. The paths the car
follows are seen in Figure 5.4. The dimensional track cost method produces more sta-
ble trajectories and thus better lap times. However, it is interesting that both methods
have instabilities in different parts of the track.

5.2 Cost function

From Equation 5.1, Ccontrol , Cspeed and Ccrash are yet to be defined.

Control cost Ccontrol

3Diving into corners refers to getting in close proximity to the edge (apex) of a corner.

5.2. Cost function 57

20 10 0 10 20
15

10

5

0

5

10

15
Dimensional track cost

20 10 0 10 20
15

10

5

0

5

10

15
Normal track cost

Figure 5.4: Traces of the paths that the car followed while running the MPPI controller
with different methods of evaluating track costs. The more solid a line is, the more
times, the vehicle has passed through that point.

Defined as in [Williams et al., 2017] as:

Ccontrol(t) =
u(t)−u(t−1)
(v(t)−u(t))2 (5.2)

Increasing this cost will force the controller to change the control sequence less rapidly
and as a result, stabilise trajectories.

Speed cost Cspeed
One of the most critical parameters, this encompasses the target speed of the vehicle.
The speed cost is defined as:

Cspeed = (ẋv−Vdes)
2 (5.3)

where Vdes is the desired speed.

Crash cost Ccrash
As noted in [Williams et al., 2017], as the unrolled trajectory is forward-sampled, the
error of the predicted dynamics becomes more significant as the errors of each consec-
utive timestep stacks on top of the previous error - Figure 5.5

To tackle this issue, the original authors of MPPI introduced a crash cost which is also
used in this project and is defined as:

Ccrash = 0.9t(10000I(Ctrack > 0.99)) (5.4)

where I(·) is an impulse function and 0.9t is the discount factor.

Cost parameter tuning
Parameter tuning for an algorithm such as MPPI is extremely difficult and particular
to each different use case. Instead of searching for the most optimal cost parameters,
it was chosen to minimise the number of tunable parameters and to provide tools for
systematically evaluating performance.

58 Chapter 5. Cost

Figure 5.5: Prediction error for Autorally dynamics. the vertical bar denotes the predic-
tion horizon. [Williams et al., 2017]

In comparison to the ten tunable parameters in the original work in [Williams et al., 2017],
users of this project are given the option to tune only four parameters as seen in Table
5.2. It is possible to change these parameters through the ROS dynamic reconfigure
tool4, which allows for parameter tuning while the controller is operating on the vehi-
cle.

Parameter Name Description
Default
Value

Vdes
Desired
velocity The target velocity the car should

strive to achieve.
10

α1
Track
coefficient Weight of how close the car should

stay to the track.
300

α2
Control
coefficient Higher values penalise the con-

troller for rapidly changing actions.
0

α3
Speed
coefficient Weight of how important it is to

achieve the target velocity.
4

Table 5.2: Tunable cost function parameters.

An additional tool was developed to track lap statistics such as lap times, average
speed, number of slips, number of occasions where the car went outside the track, as
well as all parameters of the MPPI controller. These statistics are published as a ROS
message and also stored in a YAML file for future reference. This tool comes as a ROS
node called lap stats.py within the controller package.

4Dynamic reconfigure is a tool within ROS which allows to change parameters in C++/CUDA code
as it is being executed, instead of needing to recompile the code after each parameter change

5.3. Experiments 59

5.3 Experiments

highlighting the effects of parameter changes. These are presented in Table 5.3 and
Figure 5.6. The algorithm manages to surpass easily surpass the best lap time of 11.24
s done by the human expert used to generate the dynamics data. This should give
the reader intuition regarding the complex relationships and trade-offs between the
different cost parameters. The control cost parameter α2 does not provide any perform
acne improvements, thus it is not used in these experiments. Failed experiments are
defined when the car hits a cone (track boundary) or simply goes outside of the track.

Interesting is the relationship between experiments #2 and #5 which achieve compa-
rable performance but have different traces in Figure 5.6. This is related to the track
cost as MPPI is more prone to go off-centre. A safe trajectory is also maintained in
experiment #3 but that systematically fails in the same location. This is most likely
due to the fact that the vehicle reaches not well-explored states (high speeds) and fails
to plan a correct trajectory to tackle the next corner. In term, this highlights the issue
with learning system dynamics with neural networks - they are more susceptible to
never-before-seen data in comparison to classical system identification.

Finally, it is recommended to use the cost parameters of experiment #2 as it offers the
best balance between reliability and performance.

ID Vdes α1 α2 α3 Lap time Speed

#1 10 300 0 4 11.18 ± .07 9.14 ± .05
#2 13 300 0 4 10.08 ± .10 10.14 ± .15
#3 15 300 0 4 fail
#4 15 400 0 4 10.23 ± .18 10.05 ± .15
#5 13 150 0 4 9.9 ± .14 10.28 ± .14
#6 13 150 0 5 fail

Table 5.3: Experiments with different cost parameters. Lap times and speed is averaged
over 5 laps. A failed experiment is defined when the car hits a traffic cone.

60 Chapter 5. Cost

20 10 0 10 20
15

10

5

0

5

10

15
Experiment #1

20 10 0 10 20
15

10

5

0

5

10

15
Experiment #2

20 10 0 10 20
15

10

5

0

5

10

15
Experiment #3

20 10 0 10 20
15

10

5

0

5

10

15
Experiment #4

20 10 0 10 20
15

10

5

0

5

10

15
Experiment #5

20 10 0 10 20
15

10

5

0

5

10

15
Experiment #6

Figure 5.6: Traces of paths that the car has followed during cost parameter tuning. Lap
traces consist of 5 normal laps + 1 warm-up one.

Chapter 6

Conclusions

6.1 Summary

The aim of this section is to summarise the work carried out during this project, the
authors’ contributions and achievements and to outline lessons learned.

Recent technological advancements have enabled the rise of autonomous cars, which
are promising to alleviate traffic congestion, reduce road incidents and lower pollu-
tion. As a result, the popular student competition - Formula Student was extended to
challenges students to develop, build and test an autonomous racecar. This project fo-
cuses on developing a path planning and control algorithm for such a vehicle, which is
intended to be used by the Edinburgh University Formula Student (EUFS) team.

Initially, this project, surveyed the fields of path planning and control for Ackermann-
type vehicles to find out that limited development has been made towards aggressive
autonomous driving. The most suitable option chosen was the Model Predictive Path
Integral (MPPI) algorithm, which unlike most other solutions, optimises trajectory and
control inputs simultaneously in an open-loop. This is done exploiting a fundamental
relationship between the information theoretic notations of free energy and relative
entropy resulting in an optimal control solution which takes the form of an iterative
update law which can be stochastically forward sampled in parallel on a GPU. The
algorithm, first developed in [Williams et al., 2017], is then adapted for the purposes
of this project and integrated into the autonomous driving solution of EUFS.

To facilitate the work of this project, a simulation has been developed, capable of
accurately simulating vehicle dynamics, the Formula Student environment and tackling
the necessary assumptions made during development.

Thereafter, the vehicle model needed for MPPI is explored with entirely data-driven
machine learning methods. Sufficient state space for the task at hand is defined, during
which it was shown that neural networks can be used in the development and definition
of dynamics models. A framework is then developed for collecting and processing sys-
tem identification data, which is extended with a fully-automated method of learning
dynamics models and empirically evaluating them in the simulation. With the help of

61

62 Chapter 6. Conclusions

this framework, the most suitable neural network dynamics model is identified, opti-
mised for real-time computation. Additionally, the option of online learning of these
dynamics is explored and implemented as part of the original MPPI algorithm, how-
ever, this also showcased the inherent limitations of the approach.

Finally, spatial information regarding the race tracks is embedded into the cost function
of the algorithm in the form of a costmap, which is then integrated into the project and
ready for real-world applications. The cost function of MPPI is then explored and
simplified to facilitate easier cost parameter tuning and experimentation. To aid in
evaluation, a set of tools have been developed for logging the performance, parameters
and configurations of the algorithm as well as visualising its outputs. Using these tools
a set of experiments have been run to evaluate the culmination of this project and give
the reader understanding of how MPPI can be employed. A video of results of this
project can be found online1 and all the code and datasets used are hosted in a public
repository2.

In addition to the contributions above, the author would also like to highlight lessons
learned throughout the duration of this project.

• Learning about optimal control theory, path integrals and the challenges to bring-
ing theoretically-sound solutions to real implementations.

• Familiarisation with the industry standard robotics toolkit ROS and modelling
accurate simulations with Gazebo

• Tailoring and comparing different machine learning experiments, while tackling
their stochastic behaviour.

• Testing and evaluation performance of complex algorithms such as MPPI which
do not have an easy to understand and intuitive goal. Further to that, the necessity
of easy to use, robust and deterministic evaluation tools.

• The importance of time management and automation of trivial tasks. It was
learned the hard way that throughout and carefully crafted experiments are more
valuable than brute-force quantity orientated ones.

6.2 Discussion

In this report, MPPI was integrated into EUFS software stack and was shown that it is
more than capable of aggressive racing in a simulated Formula Student environment.
However, deploying the algorithm in the real world is a different challenge which
breaks the assumptions made throughout this report. Namely 1) a SLAM algorithm
exists which outputs 2D bird’s eye cone locations and 2) accurate odometry estimation
(localisation) is provided. Although care was taken while tackling these assumptions
and even though noise was added in the simulation, that is still no guarantee for correct
operation in the real world. In principle, it is possible to impose minimal requirements

1Video of MPPI in action - https://youtu.be/xLGUA4ECP_I
2Public repository of this project - https://gitlab.com/eufs/it-mpc/tree/devel

https://youtu.be/xLGUA4ECP_I
https://gitlab.com/eufs/it-mpc/tree/devel

6.3. Future Work 63

for 1) and 2) in terms of accuracy; however, those will be of nearly no value, since the
result of this project is not a complete preconfigured solution.

The statement above brings up the next issue MPPI - it is difficult to configure and
operate. The algorithm requires throughout understanding of the theory behind it in
order to be able to operate it (and troubleshoot issues with it). Furthermore, it relies on
two major building blocks - the model and the cost which will be different for every
application. As such MPPI is not a plug-and-play algorithm, and its users should
carefully consider both its benefits and drawbacks before committing to using it.

This report extensively explored an innovative alternative to classical system identifi-
cation - learning the dynamics with a neural network, however, it was presented in a
one-dimensional viewpoint. This method has one major limitation - it is significantly
more susceptible to previously unexplored state space. An attempt to address this issue
was presented in Chapter 4.4.4 by extending the algorithm to further learn its model
online, however, that did not prove fruitful.

Throughout the report, several tools are developed for tuning and evaluating MPPI to
achieve optimal performance. However, the same exact strategy of pushing the vehicle
to its limits until it goes outside the track or flips over is not feasible in the real-world as
it will incur risking damaging expensive hardware. Therefore, even when the algorithm
is applied in real-life, the simulation developed in this report will prove to be a valuable
asset. It allows for bootstrapping the vehicle model with data from simulation and then
allowing the vehicle to explore and verify it in the real world. Furthermore, if the
simulation proves accurate enough, it can be used to estimate the optimal cost function
without having to risk damaging hardware.

6.3 Future Work

A look is finally taken at suggestions for further work that aims to possibly improve
the results of this report and address some of the short-comings found.

MPPI is an innovative controller which can utilise neural networks in its dynamics
model, however that topic is not sufficiently explored in the research community due
to its novelty. As controls are executed sequentially through time, instead of using a
standard fully-connected neural network to learn the dynamics as in Chapter 4, it is
possible to use a Recurrent Neural Network (RNN) which is specialised towards time-
series data. These networks have connections between nodes to form a directed graph
along a temporal sequence. However, unlike traditional implementations, it would not
be possible to predict a sequence of states, instead such a network will be limited to
predicting only the next timestep xt+1 while having access to the current and previous
states as seen in Figure 6.1. A further addition to this can be a novel hybrid approach to
modelling the dynamics, where the well-understood part of the model can be designed
analytically utilising classical system identification approaches and then the other non-
linear parts which are difficult to analyse can be left for a neural network to learn. In
theory, this will reap the benefits of both approaches.

64 Chapter 6. Conclusions

Figure 6.1: An example of how a RNN can be used for the predicting dynamic, while
looking at the previous 6 timesteps.

Further to the idea above, it is possible to extend the idea of online learning as shown
in Section 4.4.4 to work reliably and address the issues of neural network dynamics
learning. An approach to this might be to represent the exploration of each state vari-
able as a dense multidimensional histogram. Each bin would represent how explored
that state is and if it not as explored as other states, then the model can learn from
those particular interactions with the environment. This approach would deal with the
overfitting problem found during online learning in Section 4.4.4, while ensuring that
previously unseen states are handled correctly.

Throughout this paper, the goal has always been to predict only the next step of the al-
gorithm. However, in principle, this is not the best method, as, in the end, the algorithm
predicts several timesteps during a rollout. In theory, doing multi-step prediction would
be more correct, however, that is not trivial, especially with the real-time requirements
of this project. Approaches to solving this and potentially improving MPPI altogether
is by utilising the Dataset Aggregation algorithm [Ross et al., 2011] or even better yet,
multi-step predictions can be generated by RNNs and then optimised for multi-step
error minimisation [Mohajerin and Waslander, 2019].

6.4 MInf Part 2

The focus of this report has been understanding and integrating MPPI into the EUFS
autonomous racing solution. However, for part 2, I would like to contribute to the im-
provement and development of MPPI altogether by addressing some of its limitations.

In particular, I would like to improve the vehicle model of the algorithm and optimise
it for better dynamics prediction, utilising the suggestions from the previous section
and potentially generalising and automating it any type of robot.

However, due to the novelty of MPPI, there are many more opportunities for improve-
ment which have not been highlighted in this report. Therefore the ideas explored here
should not necessarily be considered the absolute goals for part 2 of the project.

Bibliography

[Aho and Hopcroft, 1974] Aho, A. V. and Hopcroft, J. E. (1974). The design and
analysis of computer algorithms. Pearson Education India.

[Alonso et al., 2013] Alonso, L., Perez-Oria, J., Al-Hadithi, B. M., and Jimenez, A.
(2013). Self-tuning pid controller for autonomous car tracking in urban traffic. In
System Theory, Control and Computing (ICSTCC), 2013 17th International Confer-
ence, pages 15–20. IEEE.

[Automation, 2018] Automation, R. (2018). Rbcar simulation. http://wiki.ros.
org/rbcar_sim. Accessed: 2019-04-04.

[Dijkstra, 1959] Dijkstra, E. W. (1959). A note on two problems in connexion with
graphs. Numerische mathematik, 1(1):269–271.

[Dolgov et al., 2008] Dolgov, D., Thrun, S., Montemerlo, M., and Diebel, J. (2008).
Practical search techniques in path planning for autonomous driving. Ann Arbor,
1001(48105):18–80.

[Dosovitskiy et al., 2017] Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., and
Koltun, V. (2017). Carla: An open urban driving simulator. arXiv preprint
arXiv:1711.03938.

[Fagnant and Kockelman, 2015] Fagnant, D. J. and Kockelman, K. (2015). Preparing
a nation for autonomous vehicles: opportunities, barriers and policy recommenda-
tions. Transportation Research Part A: Policy and Practice, 77:167–181.

[Funke et al., 2012] Funke, J., Theodosis, P., Hindiyeh, R., Stanek, G., Kritatakirana,
K., Gerdes, C., Langer, D., Hernandez, M., Müller-Bessler, B., and Huhnke, B.
(2012). Up to the limits: Autonomous audi tts. In Intelligent Vehicles Symposium
(IV), 2012 IEEE, pages 541–547. IEEE.

[Hart et al., 1968] Hart, P. E., Nilsson, N. J., and Raphael, B. (1968). A formal ba-
sis for the heuristic determination of minimum cost paths. IEEE transactions on
Systems Science and Cybernetics, 4(2):100–107.

[Hoppe, 1999] Hoppe, H. (1999). New quadric metric for simplifying meshes with ap-
pearance attributes. In Proceedings Visualization’99 (Cat. No. 99CB37067), pages
59–510. IEEE.

65

http://wiki.ros.org/rbcar_sim
http://wiki.ros.org/rbcar_sim

66 Bibliography

[Kasprzak and Gentz, 2006] Kasprzak, E. M. and Gentz, D. (2006). The formula sae
tire test consortium-tire testing and data handling. Technical report, SAE Technical
Paper.

[Keivan and Sibley, 2013] Keivan, N. and Sibley, G. (2013). Realtime simulation-in-
the-loop control for agile ground vehicles. In Conference Towards Autonomous
Robotic Systems, pages 276–287. Springer.

[Kingma and Ba, 2014] Kingma, D. P. and Ba, J. (2014). Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980.

[Koenig and Howard, 2004] Koenig, N. and Howard, A. (2004). Design and use
paradigms for gazebo, an open-source multi-robot simulator. In 2004 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS)(IEEE Cat. No.
04CH37566), volume 3, pages 2149–2154. IEEE.

[Kozlowski, 2012] Kozlowski, K. R. (2012). Modelling and identification in robotics.
Springer Science & Business Media.

[Kullback and Leibler, 1951] Kullback, S. and Leibler, R. A. (1951). On information
and sufficiency. The annals of mathematical statistics, 22(1):79–86.

[Leonard et al., 2008] Leonard, J., How, J., Teller, S., Berger, M., Campbell, S., Fiore,
G., Fletcher, L., Frazzoli, E., Huang, A., Karaman, S., et al. (2008). A perception-
driven autonomous urban vehicle. Journal of Field Robotics, 25(10):727–774.

[Liniger et al., 2015] Liniger, A., Domahidi, A., and Morari, M. (2015).
Optimization-based autonomous racing of 1: 43 scale rc cars. Optimal Con-
trol Applications and Methods, 36(5):628–647.

[Luo et al., 2016] Luo, Y., Bai, H., Hsu, D., and Lee, W. S. (2016). Importance sam-
pling for online planning under uncertainty. The International Journal of Robotics
Research, page 0278364918780322.

[Mohajerin and Waslander, 2019] Mohajerin, N. and Waslander, S. L. (2019). Multi-
step prediction of dynamic systems with recurrent neural networks. IEEE transac-
tions on neural networks and learning systems.

[Nilsson, 1969] Nilsson, N. J. (1969). A mobile automaton: An application of arti-
ficial intelligence techniques. Technical report, SRI INTERNATIONAL MENLO
PARK CA ARTIFICIAL INTELLIGENCE CENTER.

[O’Connor, 2018] O’Connor, M. (2018). Formula student lap time simulator.

[O’Kane, 2014] O’Kane, J. M. (2014). A gentle introduction to ros.

[Pacejka, 2005] Pacejka, H. (2005). Tire and vehicle dynamics. Elsevier.

[Paden et al., 2016] Paden, B., Čáp, M., Yong, S. Z., Yershov, D., and Frazzoli, E.
(2016). A survey of motion planning and control techniques for self-driving urban
vehicles. IEEE Transactions on intelligent vehicles, 1(1):33–55.

Bibliography 67

[Pepy and Lambert, 2006] Pepy, R. and Lambert, A. (2006). Safe path planning in
an uncertain-configuration space using rrt. In Intelligent Robots and Systems, 2006
IEEE/RSJ International Conference on, pages 5376–5381. IEEE.

[Pepy et al., 2006] Pepy, R., Lambert, A., and Mounier, H. (2006). Path planning
using a dynamic vehicle model. In Information and Communication Technologies,
2006. ICTTA’06. 2nd, volume 1, pages 781–786. IEEE.

[Pinciroli et al., 2011] Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A.,
Brambilla, M., Mathews, N., Ferrante, E., Di Caro, G., Ducatelle, F., et al. (2011).
Argos: a modular, multi-engine simulator for heterogeneous swarm robotics. In
2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
5027–5034. IEEE.

[Renals, 2018] Renals, S. (2018). Lecture 6—RmsProp: Dropout, Initialisation, Nor-
malisation. https://www.inf.ed.ac.uk/teaching/courses/mlp/2018-19/
mlp06-enc.pdf. Accessed: 2019-04-04.

[Rohmer et al., 2013] Rohmer, E., Singh, S. P., and Freese, M. (2013). V-rep: A
versatile and scalable robot simulation framework. In 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 1321–1326. IEEE.

[Ross et al., 2011] Ross, S., Gordon, G., and Bagnell, D. (2011). A reduction of imita-
tion learning and structured prediction to no-regret online learning. In Proceedings
of the fourteenth international conference on artificial intelligence and statistics,
pages 627–635.

[Shah et al., 2018] Shah, S., Dey, D., Lovett, C., and Kapoor, A. (2018). Airsim:
High-fidelity visual and physical simulation for autonomous vehicles. In Field and
service robotics, pages 621–635. Springer.

[Siegwart et al., 2011] Siegwart, R., Nourbakhsh, I. R., Scaramuzza, D., and Arkin,
R. C. (2011). Introduction to autonomous mobile robots. MIT press.

[Thrun, 2010] Thrun, S. (2010). Toward robotic cars. Communications of the ACM,
53(4):99–106.

[Thrun et al., 2006] Thrun, S., Montemerlo, M., Dahlkamp, H., Stavens, D., Aron, A.,
Diebel, J., Fong, P., Gale, J., Halpenny, M., Hoffmann, G., et al. (2006). Stanley:
The robot that won the darpa grand challenge. Journal of field Robotics, 23(9):661–
692.

[Tieleman and Hinton, 2012] Tieleman, T. and Hinton, G. (2012). Lecture 6.5—
RmsProp: Divide the gradient by a running average of its recent magnitude.
COURSERA: Neural Networks for Machine Learning. Accessed: 2019-04-04.

[Tsiotras and Diaz, 2014] Tsiotras, P. and Diaz, R. S. (2014). Real-time near-optimal
feedback control of aggressive vehicle maneuvers. In Optimization and optimal
control in automotive systems, pages 109–129. Springer.

[Urmson et al., 2008] Urmson, C., Anhalt, J., Bagnell, D., Baker, C., Bittner, R.,
Clark, M., Dolan, J., Duggins, D., Galatali, T., Geyer, C., et al. (2008). Autonomous

https://www.inf.ed.ac.uk/teaching/courses/mlp/2018-19/mlp06-enc.pdf
https://www.inf.ed.ac.uk/teaching/courses/mlp/2018-19/mlp06-enc.pdf

68 Bibliography

driving in urban environments: Boss and the urban challenge. Journal of Field
Robotics, 25(8):425–466.

[Valls et al., 2018] Valls, M. d. l. I., Hendrikx, H. F. C., Reijgwart, V., Meier, F. V.,
Sa, I., Dubé, R., Gawel, A. R., Bürki, M., and Siegwart, R. (2018). Design of
an autonomous racecar: Perception, state estimation and system integration. arXiv
preprint arXiv:1804.03252.

[Velenis et al., 2007] Velenis, E., Tsiotras, P., and Lu, J. (2007). Modeling aggressive
maneuvers on loose surfaces: The cases of trail-braking and pendulum-turn. In
Control Conference (ECC), 2007 European, pages 1233–1240. IEEE.

[Williams, 2019] Williams, G. (2019). Autorally repository. https://github.com/
AutoRally/autorally. Accessed: 2019-04-04.

[Williams et al., 2016] Williams, G., Drews, P., Goldfain, B., Rehg, J. M., and
Theodorou, E. A. (2016). Aggressive driving with model predictive path integral
control. In Robotics and Automation (ICRA), 2016 IEEE International Conference
on, pages 1433–1440. IEEE.

[Williams et al., 2017] Williams, G., Wagener, N., Goldfain, B., Drews, P., Rehg,
J. M., Boots, B., and Theodorou, E. A. (2017). Information theoretic mpc for
model-based reinforcement learning. In International Conference on Robotics and
Automation (ICRA).

[Zhao et al., 2012] Zhao, P., Chen, J., Song, Y., Tao, X., Xu, T., and Mei, T. (2012).
Design of a control system for an autonomous vehicle based on adaptive-pid. Inter-
national Journal of Advanced Robotic Systems, 9(2):44.

https://github.com/AutoRally/autorally
https://github.com/AutoRally/autorally

Appendices

69

Appendix A

Formula Student Environment

The FS-AI competition consists of 3 major events to challenge the autonomous cars.
To aid vision systems, all layouts are marked with blue traffic cones on the left side
and yellow traffic cones on the right side. The events include:

• Skidpad - Figure A.1 - a track consisting of two pairs of concentric circles in a
figure of eight pattern. The cars are required to make four laps in total around it
- two in one direction and two in the opposite direction.

• Acceleration - Figure A.2 - a straight line with a length of 75m from starting to
finish line. The track is at least 5m wide, and cones are placed at intervals of 5m.

• Trackdrive - Figure 2.1 - closed loop circuit of length between 200m and 500m.
Cars are required to complete ten laps overall and are scored according to their
average lap time. The autonomous cars have no prior knowledge about the layout
of the track and thus must learn in during the initial laps. The track consists:

– Straights: No longer than 80m.

– Constant Turns: up to 50m diameter.

– Hairpin Turns: Minimum of 9m outside diameter

71

72 Appendix A. Formula Student Environment

Figure A.1: Skidpad © Formula Student Germany

Figure A.2: Acceleration © Formula Student Germany

73

Figure A.3: Trackdrive © Formula Student Germany

Appendix B

ADS-DV Sensors and Computing

The ADS-DV vehicle is equipped with:

• Wheel encoders - track the rotation of each of the four wheels.

• Steering encoder - tracks the steering angle of the vehicle.

• INS - Ellipse 2N - an IMU and a GPS fused with a Kalman Filter outputting data
at a rate of up to 400 Hz.

• Stereo camera - ZED Camera - a cost-effective camera system capable of per-
ceiving depth from 0.5m to 20m.

• Lidar - Velodyne VLP-16 - 16 beam multi-planar Lidar capable of creating a
360° view of its surroundings up to a distance of 100m at a rate of 20 Hz

• NVidia Drive PX2 - a mobile computing equipped with 2x ARM Cortex-A57
CPUs, 2x Tegra Pascal GPUs and 64GB RAM. Aimed at parallel deep learning
computation, capable of processing 16 FP16 TFLOPS

• NVidia Jetson TX2 - a small 10W system aimed for small-scale parallelisable
computation, equipped with NVidia Pascal GPU with 256 CUDA cores, ARM
Cortex A57 CPU and 8GB of RAM.

75

76 Appendix B. ADS-DV Sensors and Computing

Figure B.1: Schematic side view of the ADS-DV. © IMechE

Appendix C

Neural network experiments

In Section 4.3, a neural network was used to identify the best possible state variables.
The full details of those experiments are:

• 2 fully-connected hidden layers with 128 neurons with biases.
• tanh activation function.
• No normalisation.
• RMSProp optimiser with learning rate 10−4, α = 0.99, ε = 10−8 and L2 weight

normalisation wd = 10−6 [Tieleman and Hinton, 2012].
• 500 epochs with batch size 100.
• 80% /10% /10% train/validation/test dataset split.

Here are the raw results from all NN experiments of Section 4.4 are shown. The
results will be split into subsections according to their architecture. The name of each
experiment was the timestamp when it was started. The learning rules use default
parameters as described in Section 4.3. The best model is selected as the one with
the best validation error. The lap time is evaluated as the 5 lap average on small track
(Section 3.4.1).

The MPPI cost parameters used for these tests are:

• Vdes = 10m/s
• α1 = 300
• α2 = 0
• α3 = 4.25

77

78 Appendix C. Neural network experiments

N
eu

ra
lN

et
w

or
k

w
ith

2
hi

dd
en

la
ye

rs
of

8
ne

ur
on

se
ac

h

N
am

e
L

ea
rn

in
g

ra
te

L
ea

rn
in

g
ru

le
N

or
m

al
is

at
io

n
D

ro
po

ut
B

es
t

ep
oc

h
in

de
x

B
es

tv
al

id
at

io
n

er
ro

r
Av

er
ag

e
la

p
tim

e
C

om
m

en
ts

20
19

-0
2-

16
T

20
:0

8:
59

.9
57

71
3

0.
00

5
A

da
m

T
R

U
E

FA
L

SE
17

8
1.

38
58

26
23

13
.8

55
V

er
y

un
st

ab
le

.
B

ar
el

y
m

an
ag

ed
to

co
m

pl
et

e
la

ps
.

20
19

-0
2-

17
T

04
:5

4:
34

.4
60

16
4

0.
00

5
R

M
SP

ro
p

T
R

U
E

FA
L

SE
89

7
1.

36
22

27
79

8
fa

il
W

en
t

ba
ck

w
ar

ds
.

Tr
a-

je
ct

or
ie

s
w

er
e

ve
ry

un
-

st
ab

le
.W

en
to

ut
si

de
th

e
tr

ac
k.

20
19

-0
2-

17
T

14
:1

7:
17

.6
31

82
0

0.
00

1
A

da
m

T
R

U
E

FA
L

SE
76

4
1.

34
69

10
35

7
10

.8
98

87
5

W
O

W
.

T
hi

s
sm

al
l

ne
t-

w
or

k
ro

ck
ed

.
It

w
as

ve
ry

sm
oo

th
.

20
19

-0
2-

18
T

01
:0

2:
42

.4
04

40
1

0.
00

1
R

M
SP

ro
p

T
R

U
E

FA
L

SE
95

3
1.

35
53

79
10

5
10

.8
13

66
66

7
W

O
W

.
T

hi
s

w
as

gr
ea

t
as

w
el

l.

20
19

-0
2-

18
T

12
:0

9:
41

.9
35

35
1

0.
00

05
A

da
m

T
R

U
E

FA
L

SE
52

7
1.

34
99

72
24

8
11

.1
89

87
5

W
en

tb
ac

k.

20
19

-0
2-

19
T

00
:1

3:
54

.1
00

48
2

0.
00

05
R

M
SP

ro
p

T
R

U
E

FA
L

SE
98

3
1.

38
50

73
06

6
fa

il
It

di
dn

’t
lik

e
co

rn
er

s
an

d
ov

er
sh

oo
tt

he
m

79

20
19

-0
2-

19
T

12
:5

4:
48

.7
56

39
2

0.
00

01
A

da
m

T
R

U
E

FA
L

SE
99

7
1.

38
13

42
53

11
.4

11
Pr

et
ty

st
ab

le
ov

er
al

l.

20
19

-0
2-

20
T

02
:3

4:
30

.4
65

52
8

0.
00

01
R

M
SP

ro
p

T
R

U
E

FA
L

SE
81

8
1.

41
25

72
02

6
11

.0
26

8
W

en
ba

ck
w

ar
ds

.
W

as
pr

et
ty

da
m

n
ag

gr
es

si
ve

an
d

lo
ve

d
sl

id
in

g.
Tr

a-
je

ct
or

ie
s

w
er

e
a

bi
t

un
-

st
ab

le
.

20
19

-0
2-

20
T

16
:5

1:
55

.7
47

31
4

0.
00

5
A

da
m

FA
L

SE
FA

L
SE

86
9

1.
44

45
89

13
8

10
.9

39
4

T
hi

s
w

as
pr

et
ty

st
ab

le
.

20
19

-0
2-

21
T

08
:5

6:
22

.2
88

95
9

0.
00

5
R

M
SP

ro
p

FA
L

SE
FA

L
SE

76
2

1.
52

22
73

89
8

11
.6

34
Tr

aj
ec

to
ry

un
st

ab
le

.
U

su
al

ly
ov

er
sh

oo
ts

co
rn

er
s.

20
19

-0
2-

22
T

01
:1

0:
42

.6
32

96
5

0.
00

1
A

da
m

FA
L

SE
FA

L
SE

93
2

1.
45

89
14

87
6

11
.1

51
4

Q
ui

te
st

ab
le

an
d

dr
if

ty
.

Il
ik

e
it.

20
19

-0
2-

22
T

18
:0

0:
02

.8
31

16
0

0.
00

1
R

M
SP

ro
p

FA
L

SE
FA

L
SE

38
2

1.
49

29
98

12
3

fa
il

Tr
aj

ec
to

ri
es

no
t

ve
ry

sm
oo

th
.

O
ve

rs
ho

ot
s

co
rn

er
s

a
lo

t.
H

it
a

lo
t

of
co

ne
s

20
19

-0
2-

23
T

11
:2

7:
14

.0
27

68
8

0.
00

05
A

da
m

FA
L

SE
FA

L
SE

95
0

1.
48

55
77

22
6

11
.3

66
83

33
3

O
ve

rs
ho

ot
s

co
rn

er
s.

L
ik

es
sl

id
in

g

80 Appendix C. Neural network experiments

20
19

-0
2-

24
T

05
:5

0:
14

.7
65

47
9

0.
00

05
R

M
SP

ro
p

FA
L

SE
FA

L
SE

96
7

1.
52

95
42

08
9

11
.6

14
25

O
ve

rs
ho

ot
s

co
rn

er
s

bu
t

al
w

ay
s

re
co

ve
rs

20
19

-0
2-

25
T

01
:1

0:
07

.2
42

52
7

0.
00

01
A

da
m

FA
L

SE
FA

L
SE

99
5

1.
62

02
59

52
3

10
.9

02
2

Q
ui

te
sm

oo
th

an
d

st
ab

le
.

V
er

y
su

rp
ri

si
ng

co
ns

id
er

in
g

th
e

hi
gh

va
lid

at
io

n
er

ro
r

20
19

-0
2-

25
T

21
:1

7:
59

.1
86

15
1

0.
00

01
R

M
SP

ro
p

FA
L

SE
FA

L
SE

99
8

1.
56

04
99

90
7

11
.3

67
75

Sm
oo

th
an

d
st

ab
le

.
so

m
et

im
es

ov
er

sh
oo

ts
co

rn
er

s

N
eu

ra
lN

et
w

or
k

w
ith

2
hi

dd
en

la
ye

rs
of

16
ne

ur
on

se
ac

h

N
am

e
L

ea
rn

in
g

ra
te

L
ea

rn
in

g
ru

le
N

or
m

al
is

at
io

n
D

ro
po

ut
B

es
t

ep
oc

h
in

de
x

B
es

tv
al

id
at

io
n

er
ro

r
Av

er
ag

e
la

p
tim

e
C

om
m

en
ts

20
19

-0
2-

16
T

20
:4

8:
04

.6
94

34
2

0.
00

5
A

da
m

T
R

U
E

FA
L

SE
38

3
1.

22
88

10
19

1
fa

il
T

he
ca

r
ju

st
w

en
tb

ac
k-

w
ar

ds
al

lt
he

w
ay

??

20
19

-0
2-

17
T

05
:3

6:
38

.9
62

34
5

0.
00

5
R

M
SP

ro
p

T
R

U
E

FA
L

SE
87

4
1.

28
69

14
22

9
fa

il

20
19

-0
2-

17
T

15
:0

4:
28

.8
06

35
0

0.
00

1
A

da
m

T
R

U
E

FA
L

SE
91

0
1.

21
54

44
08

8
fa

il

81

20
19

-0
2-

18
T

01
:5

3:
54

.3
23

22
7

0.
00

1
R

M
SP

ro
p

T
R

U
E

FA
L

SE
99

0
1.

17
07

02
21

9
fa

il

20
19

-0
2-

18
T

13
:0

5:
53

.9
25

77
4

0.
00

05
A

da
m

T
R

U
E

FA
L

SE
98

5
1.

21
41

61
87

3
10

.9
81

83
33

3

20
19

-0
2-

19
T

01
:1

3:
15

.6
28

01
0

0.
00

05
R

M
SP

ro
p

T
R

U
E

FA
L

SE
96

4
1.

21
82

94
38

2
10

.9
25

2

20
19

-0
2-

19
T

13
:5

8:
45

.4
52

09
7

0.
00

01
A

da
m

T
R

U
E

FA
L

SE
98

9
1.

30
32

82
85

7
11

.3
11

33
33

3
So

lid
.

20
19

-0
2-

20
T

03
:4

1:
47

.9
38

70
7

0.
00

01
R

M
SP

ro
p

T
R

U
E

FA
L

SE
99

7
1.

29
77

03
38

5
11

.2
95

33
33

3

20
19

-0
2-

20
T

18
:0

3:
53

.6
14

75
7

0.
00

5
A

da
m

FA
L

SE
FA

L
SE

93
1.

36
76

36
44

2
11

.1
70

66
66

7
D

ri
ft

y
bu

ts
ta

bl
e.

20
19

-0
2-

21
T

10
:1

4:
14

.7
59

40
0

0.
00

5
R

M
SP

ro
p

FA
L

SE
FA

L
SE

73
0

1.
34

60
57

65
3

fa
il

O
ve

rs
ho

ot
s

co
rn

er
s.

20
19

-0
2-

22
T

02
:3

0:
20

.2
20

83
4

0.
00

1
A

da
m

FA
L

SE
FA

L
SE

82
5

1.
34

11
03

31
5

11
.0

17
75

O
ve

rs
ho

ot
s;

ha
pp

y
to

sl
id

e.

20
19

-0
2-

22
T

19
:2

3:
51

.3
79

19
3

0.
00

1
R

M
SP

ro
p

FA
L

SE
FA

L
SE

97
1

1.
33

65
84

56
8

11
.0

07
6

20
19

-0
2-

23
T

12
:5

4:
54

.7
95

32
3

0.
00

05
A

da
m

FA
L

SE
FA

L
SE

98
6

1.
35

81
61

80
7

11
.0

70
8

20
19

-0
2-

24
T

07
:2

1:
12

.9
54

98
7

0.
00

05
R

M
SP

ro
p

FA
L

SE
FA

L
SE

97
6

1.
36

48
45

99
1

fa
il

82 Appendix C. Neural network experiments

20
19

-0
2-

25
T

02
:4

6:
31

.3
83

93
9

0.
00

01
A

da
m

FA
L

SE
FA

L
SE

99
9

1.
38

60
52

13
2

10
.9

86

20
19

-0
2-

25
T

22
:5

7:
21

.3
97

26
8

0.
00

01
R

M
SP

ro
p

FA
L

SE
FA

L
SE

4
1.

47
30

80
27

7
fa

il

N
eu

ra
lN

et
w

or
k

w
ith

2
hi

dd
en

la
ye

rs
of

32
ne

ur
on

se
ac

h

N
am

e
L

ea
rn

in
g

ra
te

L
ea

rn
in

g
ru

le
N

or
m

al
is

at
io

n
D

ro
po

ut
B

es
t

ep
oc

h
in

de
x

B
es

tv
al

id
at

io
n

er
ro

r
Av

er
ag

e
la

p
tim

e
C

om
m

en
ts

20
19

-0
2-

16
T

21
:2

7:
21

.0
98

56
4

0.
00

5
A

da
m

T
R

U
E

FA
L

SE
87

2
1.

17
10

77
49

11
.4

77
33

33
3

R
el

at
iv

el
y

je
rk

y
tr

aj
ec

-
to

ry
fu

rt
he

ra
w

ay
in

th
e

fu
tu

re
.

D
id

n’
t

w
an

t
to

st
ar

ti
ni

tia
lly

.

20
19

-0
2-

17
T

06
:1

8:
59

.4
61

14
1

0.
00

5
R

M
SP

ro
p

T
R

U
E

FA
L

SE
13

0
1.

17
33

35
07

5
11

.0
36

44
44

4
O

ve
ra

ll
w

el
l.

St
ill

di
d

th
e

go
in

g
ba

ck
w

ar
ds

th
in

g.

20
19

-0
2-

17
T

15
:5

5:
21

.7
44

30
2

0.
00

1
A

da
m

T
R

U
E

FA
L

SE
24

6
1.

11
59

12
31

8
11

.7
48

25
O

ve
rs

ho
ot

s
co

rn
er

s
an

d
hi

ts
co

ne
s.

20
19

-0
2-

18
T

02
:4

5:
33

.3
78

01
6

0.
00

1
R

M
SP

ro
p

T
R

U
E

FA
L

SE
93

9
1.

13
69

75
40

8
11

.3
19

57
14

3
O

ve
rs

ho
t

th
e

se
co

nd
co

rn
er

qu
ite

ba
dl

y.
It

w
as

fin
e

af
te

rw
ar

ds
.

83

20
19

-0
2-

18
T

14
:0

2:
23

.4
26

13
5

0.
00

05
A

da
m

T
R

U
E

FA
L

SE
77

9
1.

11
74

07
56

11
.2

74
66

66
7

U
ns

ta
bl

e
tr

aj
ec

to
ry

an
d

ov
er

sh
oo

ts
co

rn
er

s.

20
19

-0
2-

19
T

02
:1

2:
52

.8
56

42
6

0.
00

05
R

M
SP

ro
p

T
R

U
E

FA
L

SE
40

0
1.

16
11

10
28

2
11

.2
74

66
66

7
Pr

et
ty

st
ab

le
an

d
so

lid
.

20
19

-0
2-

19
T

15
:0

3:
12

.4
12

58
0

0.
00

01
A

da
m

T
R

U
E

FA
L

SE
97

6
1.

21
88

85
54

1
11

.0
72

66
66

7
O

ve
rs

ho
tfi

rs
tc

or
ne

ro
n

fir
st

la
p.

20
19

-0
2-

20
T

04
:4

9:
29

.7
54

04
5

0.
00

01
R

M
SP

ro
p

T
R

U
E

FA
L

SE
97

4
1.

19
75

23
59

4
10

.8
86

83
33

3
V

er
y

st
ab

le
.

20
19

-0
2-

22
T

20
:4

7:
34

.8
49

89
2

0.
00

1
R

M
SP

ro
p

FA
L

SE
FA

L
SE

32
5

1.
25

19
67

31
1

11
.0

72
33

33
3

Pr
et

ty
da

m
n

so
lid

.
It

is
ve

ry
co

ns
is

te
nt

an
d

m
an

ag
es

to
pr

ed
ic

t
dy

na
m

ic
s

by
its

el
f.

It
ov

er
sh

oo
ts

co
rn

er
s

qu
ite

a
lo

t
bu

t
th

en
ag

ai
n

al
w

ay
s

re
co

ve
rs

w
ith

ou
th

itt
in

g
co

ne
s.

20
19

-0
2-

23
T

14
:2

2:
51

.8
90

80
5

0.
00

05
A

da
m

FA
L

SE
FA

L
SE

78
5

1.
23

92
31

46
7

10
.9

70
6

Pr
et

ty
so

lid
.

20
19

-0
2-

24
T

08
:5

2:
25

.0
52

21
8

0.
00

05
R

M
SP

ro
p

FA
L

SE
FA

L
SE

99
9

1.
22

76
26

32
4

11
.5

44
25

A
lm

os
tw

en
to

ut
si

de
.

20
19

-0
2-

25
T

04
:2

3:
19

.5
82

38
5

0.
00

01
A

da
m

FA
L

SE
FA

L
SE

98
3

1.
35

20
55

07
3

10
.8

91

84 Appendix C. Neural network experiments

20
19

-0
2-

26
T

00
:3

7:
06

.4
88

58
1

0.
00

01
R

M
SP

ro
p

FA
L

SE
FA

L
SE

99
6

1.
31

58
96

74
9

10
.9

66

N
eu

ra
lN

et
w

or
k

w
ith

2
hi

dd
en

la
ye

rs
of

48
ne

ur
on

se
ac

h

N
am

e
L

ea
rn

in
g

ra
te

L
ea

rn
in

g
ru

le
N

or
m

al
is

at
io

n
D

ro
po

ut
B

es
t

ep
oc

h
in

de
x

B
es

tv
al

id
at

io
n

er
ro

r
Av

er
ag

e
la

p
tim

e
C

om
m

en
ts

20
19

-0
2-

16
T

22
:0

7:
10

.0
78

06
1

0.
00

5
A

da
m

T
R

U
E

FA
L

SE
87

1.
17

39
38

75
1

11
.9

46
75

Si
gn

ifi
ca

nt
ly

m
or

e
co

n-
fid

en
t

an
d

ca
pa

bl
e

in
sl

id
in

g.
W

or
th

no
t-

in
g

th
at

it
ov

er
fit

s
ve

ry
sw

if
tly

20
19

-0
2-

17
T

07
:0

1:
38

.8
87

07
6

0.
00

5
R

M
SP

ro
p

T
R

U
E

FA
L

SE
14

3
1.

18
68

50
42

9
12

.4
47

5
A

lw
ay

s
ov

er
sh

oo
ts

th
e

fir
st

co
rn

er
.

O
ne

sl
ow

tr
ac

k
be

ca
us

e
it

hi
t

co
ne

s

20
19

-0
2-

17
T

17
:0

1:
11

.0
95

97
3

0.
00

1
A

da
m

T
R

U
E

FA
L

SE
39

0
1.

12
62

26
06

8
12

.0
09

4
A

lw
ay

s
ov

er
sh

oo
ts

th
e

fir
st

co
rn

er
.

O
ne

sl
ow

tr
ac

k
be

ca
us

e
it

hi
t

co
ne

s

20
19

-0
2-

18
T

03
:3

7:
30

.4
28

86
4

0.
00

1
R

M
SP

ro
p

T
R

U
E

FA
L

SE
42

1
1.

10
11

66
48

7
11

.2
78

2
Pr

et
ty

go
od

.
A

lw
ay

s
w

ith
in

th
e

tr
ac

k

85

20
19

-0
2-

18
T

14
:5

9:
12

.6
01

84
1

0.
00

05
A

da
m

T
R

U
E

FA
L

SE
33

7
1.

11
84

75
43

7
11

.5
31

85
71

4
O

ve
rs

ho
tfi

rs
tc

or
ne

r

20
19

-0
2-

19
T

03
:1

2:
48

.5
44

22
9

0.
00

05
R

M
SP

ro
p

T
R

U
E

FA
L

SE
27

8
1.

10
24

32
13

2
11

.1
59

20
19

-0
2-

19
T

16
:0

7:
45

.3
83

98
0

0.
00

01
A

da
m

T
R

U
E

FA
L

SE
98

6
1.

15
32

97
66

3
11

.5
01

83
33

3
O

ve
rs

ho
tfi

rs
tc

or
ne

r

20
19

-0
2-

20
T

05
:5

7:
26

.2
63

48
2

0.
00

01
R

M
SP

ro
p

T
R

U
E

FA
L

SE
97

7
1.

15
86

67
32

6
10

.8
5

20
19

-0
2-

20
T

20
:3

0:
53

.8
86

82
4

0.
00

5
A

da
m

FA
L

SE
FA

L
SE

17
9

1.
24

66
57

25
2

11
.2

87
71

42
9

20
19

-0
2-

21
T

12
:5

0:
53

.6
87

84
6

0.
00

5
R

M
SP

ro
p

FA
L

SE
FA

L
SE

25
7

1.
27

19
78

37
8

11
.2

49
25

It
le

ar
ne

d
to

co
ol

dr
if

t
ar

ou
nd

th
e

1s
tc

or
ne

r

20
19

-0
2-

22
T

05
:1

0:
37

.4
83

34
0

0.
00

1
A

da
m

FA
L

SE
FA

L
SE

79
7

1.
17

53
11

20
8

fa
il

W
en

t
ou

ts
id

e
of

th
e

tr
ac

k
on

th
e

3r
d

la
p.

D
id

a
co

ol
fin

al
m

om
en

t
re

sc
ue

dr
if

t

20
19

-0
2-

22
T

22
:1

1:
15

.7
39

79
6

0.
00

1
R

M
SP

ro
p

FA
L

SE
FA

L
SE

49
6

1.
19

09
76

62
11

.0
71

20
19

-0
2-

23
T

15
:5

1:
07

.2
20

96
8

0.
00

05
A

da
m

FA
L

SE
FA

L
SE

99
8

1.
22

12
66

27
11

.8
59

75
U

ns
ta

bl
e;

ov
er

sh
oo

ts

N
eu

ra
lN

et
w

or
k

w
ith

2
hi

dd
en

la
ye

rs
of

64
ne

ur
on

se
ac

h

86 Appendix C. Neural network experiments

N
am

e
L

ea
rn

in
g

ra
te

L
ea

rn
in

g
ru

le
N

or
m

al
is

at
io

n
D

ro
po

ut
B

es
t

ep
oc

h
in

de
x

B
es

tv
al

id
at

io
n

er
ro

r
Av

er
ag

e
la

p
tim

e
C

om
m

en
ts

20
19

-0
2-

16
T

22
:4

7:
20

.9
76

82
6

98
30

4
0.

00
5

A
da

m
T

R
U

E
FA

L
SE

10
0

11
.5

1
D

riv
es

on
th

e
ou

ts
id

e
of

th
e

tr
ac

k
bu

t
ha

sn
’t

hi
t

th
e

cb
ou

nd
ar

ie
s

20
19

-0
2-

17
T

07
:4

5:
01

.0
53

05
7

98
30

4
0.

00
5

R
M

SP
ro

p
T

R
U

E
FA

L
SE

49
11

.8
17

66
66

7

20
19

-0
2-

17
T

17
:5

0:
15

.8
38

24
0

98
30

4
0.

00
1

A
da

m
T

R
U

E
FA

L
SE

13
2

11
.7

32
6

20
19

-0
2-

18
T

04
:2

9:
51

.1
44

20
9

98
30

4
0.

00
1

R
M

SP
ro

p
T

R
U

E
FA

L
SE

15
3

12
.1

51
K

in
d-

a
un

st
ab

le
.

O
ve

r-
sh

oo
ts

co
rn

er
s

20
19

-0
2-

18
T

15
:5

6:
22

.2
93

87
4

98
30

4
0.

00
05

A
da

m
T

R
U

E
FA

L
SE

42
4

12
.6

33
66

66
7

A
lm

os
tw

en
to

ut
of

th
e

tr
ac

k

20
19

-0
2-

19
T

04
:1

3:
04

.9
11

00
1

98
30

4
0.

00
05

R
M

SP
ro

p
T

R
U

E
FA

L
SE

26
2

11
.1

38
25

G
oo

d

20
19

-0
2-

19
T

17
:1

2:
47

.3
33

05
7

98
30

4
0.

00
01

A
da

m
T

R
U

E
FA

L
SE

95
2

11
.1

82
5

N
ot

m
uc

h
dr

if
tin

g
bu

t
lo

ok
s

ve
ry

ef
fic

ie
nt

20
19

-0
2-

19
T

17
:1

2:
47

.3
33

05
7

98
30

4
0.

00
01

R
M

SP
ro

p
T

R
U

E
FA

L
SE

99
4

11
.4

90
33

33
3

O
ve

rs
ho

ot
s

a
bi

t

20
19

-0
2-

20
T

21
:5

7:
52

.9
05

51
1

98
30

4
0.

00
5

A
da

m
FA

L
SE

FA
L

SE
31

9
11

.3
17

87

20
19

-0
2-

21
T

14
:0

9:
37

.2
95

58
3

98
30

4
0.

00
5

R
M

SP
ro

p
FA

L
SE

FA
L

SE
21

5
fa

il
ov

er
sh

ot

20
19

-0
2-

22
T

06
:3

1:
20

.7
84

28
6

98
30

4
0.

00
1

A
da

m
FA

L
SE

FA
L

SE
26

0
11

.4
30

2
ov

er
sh

ot

20
19

-0
2-

22
T

23
:3

5:
05

.6
71

67
9

98
30

4
0.

00
1

R
M

SP
ro

p
FA

L
SE

FA
L

SE
50

8
11

.0
91

20
19

-0
2-

23
T

17
:1

9:
37

.9
51

10
5

98
30

4
0.

00
05

A
da

m
FA

L
SE

FA
L

SE
92

5
11

.5
50

6

20
19

-0
2-

24
T

11
:5

5:
59

.9
24

84
1

98
30

4
0.

00
05

R
M

SP
ro

p
FA

L
SE

FA
L

SE
66

2
11

.4
42

5

20
19

-0
2-

25
T

07
:3

8:
05

.4
52

94
4

98
30

4
0.

00
01

A
da

m
FA

L
SE

FA
L

SE
98

7
11

.0
77

2

N
eu

ra
lN

et
w

or
k

w
ith

3
hi

dd
en

la
ye

rs
of

8
ne

ur
on

se
ac

h

N
am

e
L

ea
rn

in
g

ra
te

L
ea

rn
in

g
ru

le
N

or
m

al
is

at
io

n
D

ro
po

ut
B

es
t

ep
oc

h
in

de
x

B
es

tv
al

id
at

io
n

er
ro

r
Av

er
ag

e
la

p
tim

e
C

om
m

en
ts

20
19

-0
2-

16
T

23
:2

7:
59

.1
89

43
9

0.
00

5
A

da
m

T
R

U
E

FA
L

SE
87

4
1.

30
38

64
36

fa
il

H
m

m
th

is
re

fu
se

st
o

ru
n

fo
r

so
m

e
re

as
on

.
It

ju
st

w
an

ts
to

go
ba

ck
-

w
ar

ds
in

de
fin

at
el

y.
In

-
ve

st
ig

at
e

fu
rt

he
r!

88 Appendix C. Neural network experiments

20
19

-0
2-

17
T

08
:2

8:
28

.4
56

83
4

0.
00

5
R

M
SP

ro
p

T
R

U
E

FA
L

SE
93

5
1.

36
38

07
44

11
.4

09
33

33
3

20
19

-0
2-

17
T

08
:2

8:
28

.4
56

83
4

0.
00

1
A

da
m

T
R

U
E

FA
L

SE
94

2
1.

32
38

21
42

5
11

.3
00

16
66

7

20
19

-0
2-

18
T

05
:2

2:
28

.0
78

10
2

0.
00

1
R

M
SP

ro
p

T
R

U
E

FA
L

SE
89

7
1.

31
32

25
74

6
14

.8
70

5
D

id
n’

td
o

w
el

la
ta

ll

20
19

-0
2-

18
T

16
:5

3:
50

.7
40

92
3

0.
00

5
A

da
m

T
R

U
E

FA
L

SE
96

6
1.

32
44

02
57

1
11

.8
67

5

20
19

-0
2-

19
T

05
:1

3:
35

.7
05

91
1

0.
00

5
R

M
SP

ro
p

T
R

U
E

FA
L

SE
52

3
1.

31
53

94
52

1
10

.9
79

20
19

-0
2-

19
T

18
:1

8:
08

.4
62

32
1

0.
00

01
A

da
m

T
R

U
E

FA
L

SE
99

9
1.

37
88

53
08

3
11

20
19

-0
2-

20
T

08
:1

4:
14

.8
80

96
4

0.
00

01
R

M
SP

ro
p

T
R

U
E

FA
L

SE
99

7
1.

36
70

05
82

5
11

.0
21

20
19

-0
2-

20
T

23
:2

1:
06

.4
52

95
4

0.
00

5
A

da
m

FA
L

SE
FA

L
SE

85
9

1.
42

03
28

14
10

.7
20

5

20
19

-0
2-

21
T

15
:2

8:
39

.4
19

48
9

0.
00

5
R

M
SP

ro
p

FA
L

SE
FA

L
SE

86
9

1.
45

26
19

91
fa

ile
d

go
ts

tu
ck

in
co

rn
er

s?

20
19

-0
2-

22
T

07
:5

2:
18

.2
52

64
2

0.
00

1
A

da
m

FA
L

SE
FA

L
SE

97
4

1.
45

70
05

50
1

11
.9

35
66

66
7

ov
er

sh
oo

ts
ha

rd
;

w
ig

-
gl

y
tr

aj
ec

to
ri

es

20
19

-0
2-

23
T

00
:5

9:
16

.3
41

25
7

0.
00

1
R

M
SP

ro
p

FA
L

SE
FA

L
SE

95
4

1.
41

90
65

95
2

12
.5

04
w

en
tb

ac
kw

ar
ds

fir
st

89

20
19

-0
2-

23
T

18
:4

8:
27

.7
47

37
9

0.
00

05
A

da
m

FA
L

SE
FA

L
SE

98
9

1.
42

06
49

64
8

fa
il

20
19

-0
2-

24
T

13
:2

8:
15

.8
97

29
4

0.
00

05
R

M
SP

ro
p

FA
L

SE
FA

L
SE

85
5

1.
47

32
97

23
8

fa
il

20
19

-0
2-

25
T

09
:1

5:
58

.6
38

38
7

0.
00

01
A

da
m

FA
L

SE
FA

L
SE

99
3

1.
51

76
55

13
4

11
.1

19
16

66
7

20
19

-0
2-

26
T

05
:3

8:
38

.0
81

90
8

0.
00

01
R

M
SP

ro
p

FA
L

SE
FA

L
SE

99
7

1.
53

80
70

44
11

.2
48

25

N
eu

ra
lN

et
w

or
k

w
ith

3
hi

dd
en

la
ye

rs
of

8,
16

,8
ne

ur
on

se
ac

h
re

sp
ec

tiv
el

y

N
am

e
L

ea
rn

in
g

ra
te

L
ea

rn
in

g
ru

le
N

or
m

al
is

at
io

n
D

ro
po

ut
B

es
t

ep
oc

h
in

de
x

B
es

tv
al

id
at

io
n

er
ro

r
Av

er
ag

e
la

p
tim

e
C

om
m

en
ts

20
19

-0
2-

17
T

00
:1

3:
41

.5
34

45
4

0.
00

5
A

da
m

T
R

U
E

FA
L

SE
38

7
1.

29
35

00
66

2
12

.6
50

28
57

1
W

as
qu

ite
he

si
ta

nt
to

st
ar

t
bu

t
ru

n
fa

ir
ly

sm
oo

th
ly

on
ce

st
ar

te
d

20
19

-0
2-

17
T

09
:1

7:
06

.7
50

57
4

0.
00

5
R

M
SP

ro
p

T
R

U
E

FA
L

SE
96

1.
30

29
35

95
8

fa
il

ov
er

sh
oo

ts
co

rn
er

s
gr

ac
ef

ul
ly

(i
.e

.s
to

ps
)

20
19

-0
2-

17
T

19
:3

1:
52

.7
63

61
5

0.
00

1
A

da
m

T
R

U
E

FA
L

SE
95

9
1.

26
39

50
58

6
11

.4
19

5

20
19

-0
2-

18
T

06
:1

9:
38

.2
92

82
3

0.
00

1
R

M
SP

ro
p

T
R

U
E

FA
L

SE
79

8
1.

24
08

46
51

5
11

.2
71

28
57

1

90 Appendix C. Neural network experiments

20
19

-0
2-

18
T

17
:5

5:
43

.9
94

69
7

0.
00

5
A

da
m

T
R

U
E

FA
L

SE
98

1
1.

25
63

22
38

4
fa

il
st

ar
te

d
go

in
g

ba
ck

-
w

ar
ds

;
fa

ils
be

ca
us

e
it

is
he

si
ta

nt
ar

ou
nd

co
rn

er
s

20
19

-0
2-

19
T

06
:1

8:
30

.6
64

71
9

0.
00

5
R

M
SP

ro
p

T
R

U
E

FA
L

SE
96

0
1.

26
79

22
87

8
11

.1
75

ov
er

sh
ot

s,
fa

ile
d

fin
al

la
p

20
19

-0
2-

19
T

19
:2

7:
59

.2
65

71
6

0.
00

01
A

da
m

T
R

U
E

FA
L

SE
98

6
1.

30
53

67
82

7
11

.6
90

25

20
19

-0
2-

20
T

09
:2

7:
04

.7
14

05
7

0.
00

01
R

M
SP

ro
p

T
R

U
E

FA
L

SE
99

0
1.

37
34

93
67

1
11

.1
99

20
19

-0
2-

21
T

00
:4

2:
52

.7
12

40
4

0.
00

5
A

da
m

FA
L

SE
FA

L
SE

54
1

1.
31

12
75

95
9

11
.5

02
16

66
7

he
si

ta
tn

t
ar

ou
nd

co
r-

ne
rs

20
19

-0
2-

21
T

16
:5

2:
12

.2
19

85
5

0.
00

5
R

M
SP

ro
p

FA
L

SE
FA

L
SE

64
1

1.
37

51
23

73
9

10
.9

10
6

20
19

-0
2-

22
T

09
:1

7:
57

.9
56

05
3

0.
00

1
A

da
m

FA
L

SE
FA

L
SE

90
0

1.
32

92
72

03
2

fa
il

un
st

ab
le

tr
aj

ec
to

ry

20
19

-0
2-

23
T

02
:2

7:
50

.5
65

91
9

0.
00

1
R

M
SP

ro
p

FA
L

SE
FA

L
SE

98
8

1.
34

36
02

77
7

11
.9

26
8

w
en

tb
ac

kw
ar

ds

20
19

-0
2-

23
T

20
:2

2:
00

.7
85

66
7

0.
00

05
A

da
m

FA
L

SE
FA

L
SE

98
8

1.
35

83
35

61
4

fa
il

91

20
19

-0
2-

24
T

15
:0

4:
15

.7
49

00
5

0.
00

05
R

M
SP

ro
p

FA
L

SE
FA

L
SE

92
9

1.
39

15
09

41
4

11
.3

72
25

20
19

-0
2-

25
T

10
:5

8:
32

.1
82

78
0

0.
00

01
A

da
m

FA
L

SE
FA

L
SE

98
3

1.
44

35
59

88
5

11
.6

42
K

in
d-

of
do

es
th

e
w

ei
gh

sh
if

tin
g

bu
ti

t’s
ve

ry
un

-
st

ab
le

20
19

-0
2-

26
T

07
:2

3:
43

.0
16

18
2

0.
00

01
R

M
SP

ro
p

FA
L

SE
FA

L
SE

98
6

1.
45

28
52

01
1

11
.1

20
16

66
7

N
eu

ra
lN

et
w

or
k

w
ith

3
hi

dd
en

la
ye

rs
of

8,
16

,1
6

ne
ur

on
se

ac
h

re
sp

ec
tiv

el
y

N
am

e
L

ea
rn

in
g

ra
te

L
ea

rn
in

g
ru

le
N

or
m

al
is

at
io

n
D

ro
po

ut
B

es
t

ep
oc

h
in

de
x

B
es

tv
al

id
at

io
n

er
ro

r
Av

er
ag

e
la

p
tim

e
C

om
m

en
ts

20
19

-0
2-

17
T

00
:5

9:
54

.3
54

92
1

0.
00

5
A

da
m

T
R

U
E

FA
L

SE
54

7
1.

23
55

17
02

5
fa

il
Fa

ils
to

co
pm

le
te

la
ps

.
St

ar
ts

of
f

w
el

l
bu

t
tr

a-
je

ct
or

y
is

ve
ry

je
rk

y
an

d
so

m
ei

m
te

s
al

so
w

an
ts

to
go

ba
ck

w
ar

ds

20
19

-0
2-

17
T

10
:0

6:
01

.2
24

96
2

0.
00

5
R

M
SP

ro
p

T
R

U
E

FA
L

SE
41

8
1.

22
44

64
65

5
fa

il
w

en
t

ba
ck

w
ar

ds
;

w
en

t
ou

ts
id

e
th

e
tr

ac
k

ha
rd

92 Appendix C. Neural network experiments

20
19

-0
2-

17
T

20
:2

5:
36

.3
32

77
1

0.
00

1
A

da
m

T
R

U
E

FA
L

SE
64

3
1.

22
29

90
15

5
11

.6
03

71
42

9
w

en
t

ba
ck

w
ar

ds
,

bu
t

pr
et

ty
cr

az
y.

D
id

n’
th

it
an

y
co

ne
s

fir
st

3
la

ps
.

T
he

n
w

en
to

ut
si

de

20
19

-0
2-

18
T

07
:1

7:
08

.7
34

91
1

0.
00

1
R

M
SP

ro
p

T
R

U
E

FA
L

SE
99

4
1.

20
61

14
65

11
.2

58
66

66
7

20
19

-0
2-

18
T

18
:5

8:
01

.4
22

82
5

0.
00

5
A

da
m

T
R

U
E

FA
L

SE
99

9
1.

23
37

64
41

fa
il

G
oe

s
ou

ts
id

e
af

te
r

th
e

fir
st

co
rn

er

20
19

-0
2-

19
T

07
:2

3:
43

.2
18

17
7

0.
00

5
R

M
SP

ro
p

T
R

U
E

FA
L

SE
98

7
1.

23
03

89
47

6
11

.1
76

4
Pr

et
ty

go
od

20
19

-0
2-

19
T

20
:3

8:
06

.1
31

86
7

0.
00

01
A

da
m

T
R

U
E

FA
L

SE
99

1
1.

27
97

15
06

1
11

.4
13

W
en

t
ou

ts
id

e
tr

ac
k

on
3r

d
la

p

20
19

-0
2-

20
T

10
:4

0:
11

.3
38

61
5

0.
00

01
R

M
SP

ro
p

T
R

U
E

FA
L

SE
96

4
1.

31
68

35
64

2
11

.3
81

66
66

7

20
19

-0
2-

21
T

02
:0

4:
22

.6
61

05
5

0.
00

5
A

da
m

FA
L

SE
FA

L
SE

46
2

1.
34

90
86

40
4

11
.9

44
5

on
ly

2
la

ps

20
19

-0
2-

21
T

18
:1

6:
15

.7
00

10
0

0.
00

5
R

M
SP

ro
p

FA
L

SE
FA

L
SE

40
0

1.
37

47
10

67
9

11
.1

61
25

20
19

-0
2-

22
T

10
:4

4:
01

.2
72

38
4

0.
00

1
A

da
m

FA
L

SE
FA

L
SE

89
4

1.
30

13
14

11
6

11
.6

17
8

93

20
19

-0
2-

23
T

03
:5

6:
51

.0
80

72
0

0.
00

1
R

M
SP

ro
p

FA
L

SE
FA

L
SE

59
5

1.
32

23
84

71
5

fa
il

w
en

t
ba

ck
w

ar
ds

;
w

en
t

ou
ts

id
e

on
fir

st
co

rn
er

20
19

-0
2-

23
T

21
:5

5:
54

.6
05

13
7

0.
00

05
A

da
m

FA
L

SE
FA

L
SE

98
7

1.
26

73
97

28
5

10
.9

01
33

33
3

20
19

-0
2-

24
T

16
:5

4:
40

.2
08

21
6

0.
00

05
R

M
SP

ro
p

FA
L

SE
FA

L
SE

98
6

1.
29

11
09

68
1

11
.3

87
33

33
3

20
19

-0
2-

25
T

12
:4

1:
25

.4
02

91
7

0.
00

01
A

da
m

FA
L

SE
FA

L
SE

99
3

1.
37

65
96

33
2

10
.7

80
6

w
en

t
ba

ck
w

ar
ds

;
af

te
r-

w
ar

ds
pr

et
ty

co
ns

is
te

nt

20
19

-0
2-

26
T

09
:0

9:
17

.9
63

56
5

0.
00

01
R

M
SP

ro
p

FA
L

SE
FA

L
SE

99
5

1.
43

92
65

49
11

.4
62

14
28

6

N
eu

ra
lN

et
w

or
k

w
ith

3
hi

dd
en

la
ye

rs
of

16
ne

ur
on

se
ac

h

94 Appendix C. Neural network experiments

N
am

e
L

ea
rn

in
g

ra
te

L
ea

rn
in

g
ru

le
N

or
m

al
is

at
io

n
D

ro
po

ut
B

es
t

ep
oc

h
in

de
x

B
es

tv
al

id
at

io
n

er
ro

r
Av

er
ag

e
la

p
tim

e
C

om
m

en
ts

20
19

-0
2-

17
T

01
:4

6:
11

.7
81

76
1

0.
00

5
A

da
m

T
R

U
E

FA
L

SE
68

9
1.

24
06

14
29

5
11

.7
37

33
33

3
T

hi
s

on
e

if
a

pa
ra

do
x.

T
he

tr
aj

ec
to

ry
is

ve
ry

un
st

ab
le

bu
t

in
a

di
f-

fe
re

nt
w

ay
to

be
fo

re
.

T
he

ov
er

al
l

en
d

go
al

po
si

tio
n

is
pr

et
ty

co
n-

st
an

t,
bu

t
th

e
pa

th
to

it
ch

an
ge

s.
E

ve
n

w
ith

th
is

,
it’

s
la

p
tim

es
ar

e
on

e
of

th
e

m
os

t
st

ab
le

on
es

se
en

th
us

fa
r.

20
19

-0
2-

17
T

10
:5

5:
07

.1
38

04
6

0.
00

5
R

M
SP

ro
p

T
R

U
E

FA
L

SE
16

0
1.

23
40

59
81

1
11

.4
20

6
ov

er
sh

ot
co

rn
er

s
sl

ig
ht

ly

20
19

-0
2-

18
T

08
:1

4:
56

.0
74

45
4

0.
00

1
A

da
m

T
R

U
E

FA
L

SE
49

2
1.

17
59

12
73

8
11

.0
13

66
66

7
lo

ok
s

pr
et

ty
sl

ic
k

20
19

-0
2-

18
T

20
:0

0:
35

.0
05

33
3

0.
00

05
A

da
m

T
R

U
E

FA
L

SE
97

4
1.

21
72

39
14

1
11

.2
14

28
57

1
Sl

id
y

20
19

-0
2-

19
T

08
:2

9:
17

.0
35

04
0

0.
00

05
R

M
SP

ro
p

T
R

U
E

FA
L

SE
77

7
1.

20
42

08
97

fa
il

w
en

to
ve

rb
oa

rd
,f

as
t

20
19

-0
2-

19
T

21
:4

8:
42

.4
46

90
1

0.
00

01
A

da
m

T
R

U
E

FA
L

SE
98

2
1.

24
81

36
04

4
11

.1
41

5
Pr

et
ty

st
ab

le

95

20
19

-0
2-

20
T

11
:5

3:
49

.6
21

84
6

0.
00

01
R

M
SP

ro
p

T
R

U
E

FA
L

SE
96

5
1.

22
72

86
93

5
11

.2
04

75

20
19

-0
2-

21
T

03
:2

6:
12

.9
17

72
7

0.
00

5
A

da
m

FA
L

SE
FA

L
SE

36
7

1.
31

89
27

05
fa

il

20
19

-0
2-

21
T

19
:4

0:
46

.4
92

09
6

0.
00

5
R

M
SP

ro
p

FA
L

SE
FA

L
SE

91
1.

36
36

37
09

fa
il

20
19

-0
2-

22
T

12
:1

0:
19

.5
88

62
5

0.
00

1
A

da
m

FA
L

SE
FA

L
SE

71
0

1.
30

26
51

88
2

11
.0

19
75

20
19

-0
2-

23
T

05
:2

6:
23

.3
49

22
4

0.
00

1
R

M
SP

ro
p

FA
L

SE
FA

L
SE

89
8

1.
28

40
17

92
11

.5
59

20
19

-0
2-

23
T

23
:3

0:
07

.7
85

84
2

0.
00

05
A

da
m

FA
L

SE
FA

L
SE

78
5

1.
27

95
77

49
4

11
.1

37

20
19

-0
2-

24
T

18
:3

4:
56

.7
44

69
6

0.
00

05
R

M
SP

ro
p

FA
L

SE
FA

L
SE

93
2

1.
28

64
06

39
8

11
.2

71
33

33
3

20
19

-0
2-

25
T

14
:2

3:
55

.1
41

83
9

0.
00

01
A

da
m

FA
L

SE
FA

L
SE

98
1

1.
34

62
97

62
2

11
.0

45
75

20
19

-0
2-

26
T

11
:0

3:
57

.2
39

83
3

0.
00

01
R

M
SP

ro
p

FA
L

SE
FA

L
SE

99
3

1.
37

30
29

11
3

11
.0

08
6

N
eu

ra
lN

et
w

or
k

w
ith

3
hi

dd
en

la
ye

rs
of

16
,3

2,
16

ne
ur

on
se

ac
h

re
sp

ec
tiv

el
y

96 Appendix C. Neural network experiments

N
am

e
L

ea
rn

in
g

ra
te

L
ea

rn
in

g
ru

le
N

or
m

al
is

at
io

n
D

ro
po

ut
B

es
t

ep
oc

h
in

de
x

B
es

tv
al

id
at

io
n

er
ro

r
Av

er
ag

e
la

p
tim

e
C

om
m

en
ts

20
19

-0
2-

17
T

02
:3

2:
55

.5
97

03
0

0.
00

5
A

da
m

T
R

U
E

FA
L

SE
62

5
1.

18
29

89
12

11
.1

99
16

66
7

In
iti

al
ly

st
ar

te
d

pl
an

-
ni

ng
ba

ck
w

ar
ds

,
bu

t
qu

ic
kl

y
re

co
ve

re
d.

Pl
an

s
w

el
l

bu
t

te
nd

s
to

do
a

sn
ai

l
tr

ai
l

at
th

e
en

d
of

th
e

pa
th

20
19

-0
2-

17
T

11
:4

4:
37

.2
14

77
4

0.
00

5
R

M
SP

ro
p

T
R

U
E

FA
L

SE
51

2
1.

18
29

44
17

9
11

.7
19

75
U

ns
ta

bl
e

tr
aj

ec
to

ry

20
19

-0
2-

17
T

22
:1

5:
54

.2
93

44
5

0.
00

1
A

da
m

T
R

U
E

FA
L

SE
44

0
1.

18
36

42
74

5
fa

il
G

oe
s

ba
ck

w
ar

ds

20
19

-0
2-

18
T

09
:1

3:
09

.8
92

21
7

0.
00

1
R

M
SP

ro
p

T
R

U
E

FA
L

SE
33

1
1.

12
46

80
63

8
fa

il
ov

er
sh

oo
ts

ba
dl

y

20
19

-0
2-

18
T

21
:0

3:
23

.1
27

86
2

0.
00

05
A

da
m

T
R

U
E

FA
L

SE
60

9
1.

14
72

88
44

2
12

.9
85

6
ov

er
sh

ot
on

ce

20
19

-0
2-

19
T

09
:3

5:
04

.8
51

00
5

0.
00

05
R

M
SP

ro
p

T
R

U
E

FA
L

SE
94

0
1.

14
76

27
35

4
11

.1
24

4
pr

et
ty

go
od

20
19

-0
2-

19
T

22
:5

9:
29

.0
40

58
4

0.
00

01
A

da
m

T
R

U
E

FA
L

SE
98

8
1.

19
19

58
07

11
.1

32
66

66
7

20
19

-0
2-

20
T

13
:0

7:
46

.9
53

47
9

0.
00

01
R

M
SP

ro
p

T
R

U
E

FA
L

SE
98

9
1.

22
89

70
28

9
11

.4
63

2
fa

ile
d

to
st

ar
tc

or
re

ct
ly

?

97

20
19

-0
2-

21
T

04
:4

7:
58

.5
85

56
9

0.
00

5
A

da
m

FA
L

SE
FA

L
SE

14
8

1.
26

36
07

86
fa

il
w

en
to

ut
si

de
at

th
e

en
d

20
19

-0
2-

21
T

21
:0

2:
57

.9
07

65
9

0.
00

5
R

M
SP

ro
p

FA
L

SE
FA

L
SE

11
2

1.
29

62
14

46
1

11
.5

74
25

a
bi

tu
ns

ta
bl

e

20
19

-0
2-

22
T

13
:3

6:
55

.8
48

76
9

0.
00

1
A

da
m

FA
L

SE
FA

L
SE

80
9

1.
26

58
10

25
1

11
.3

1

20
19

-0
2-

23
T

06
:5

6:
03

.9
88

47
6

0.
00

1
R

M
SP

ro
p

FA
L

SE
FA

L
SE

34
4

1.
28

80
14

05
4

fa
il

20
19

-0
2-

24
T

01
:0

4:
31

.1
66

06
6

0.
00

05
A

da
m

FA
L

SE
FA

L
SE

74
5

1.
25

47
14

25
1

11
.5

93
5

ov
er

sh
oo

ts

20
19

-0
2-

24
T

20
:1

3:
00

.6
54

53
5

0.
00

05
R

M
SP

ro
p

FA
L

SE
FA

L
SE

70
4

1.
26

90
54

65
1

12
.8

44
5

w
en

t
ba

ck
w

ar
ds

;
ov

er
-

sh
oo

ts

20
19

-0
2-

25
T

16
:0

6:
43

.0
23

12
5

0.
00

01
A

da
m

FA
L

SE
FA

L
SE

99
8

1.
33

87
43

21
10

.8
83

25
pr

et
ty

st
ab

le

20
19

-0
2-

26
T

12
:4

9:
15

.0
94

62
0

0.
00

01
R

M
SP

ro
p

FA
L

SE
FA

L
SE

98
2

1.
37

09
82

28
9

fa
il

N
eu

ra
lN

et
w

or
k

w
ith

3
hi

dd
en

la
ye

rs
of

32
ne

ur
on

se
ac

h

98 Appendix C. Neural network experiments

N
am

e
L

ea
rn

in
g

ra
te

L
ea

rn
in

g
ru

le
N

or
m

al
is

at
io

n
D

ro
po

ut
B

es
t

ep
oc

h
in

de
x

B
es

tv
al

id
at

io
n

er
ro

r
Av

er
ag

e
la

p
tim

e
C

om
m

en
ts

0.
00

5
A

da
m

T
R

U
E

FA
L

SE
54

1.
17

69
32

09
6

1.
18

29
89

12
11

.2
23

5
Tr

aj
ec

to
ry

lo
ok

s
st

ab
le

bu
th

it
3

co
ne

s.

0.
00

5
R

M
SP

ro
p

T
R

U
E

FA
L

SE
11

7
1.

18
81

33
59

7
1.

18
29

44
17

9
11

.4
53

25

0.
00

1
A

da
m

T
R

U
E

FA
L

SE
20

7
1.

13
46

05
40

8
1.

18
36

42
74

5
fa

il
ov

er
sh

ot
ha

rd
on

th
e

1s
t

co
rn

er

0.
00

1
R

M
SP

ro
p

T
R

U
E

FA
L

SE
62

1
1.

12
98

94
61

4
1.

12
46

80
63

8
11

.3
80

75

0.
00

05
A

da
m

T
R

U
E

FA
L

SE
44

5
1.

10
34

17
63

5
1.

14
72

88
44

2
11

.1
78

25

0.
00

05
R

M
SP

ro
p

T
R

U
E

FA
L

SE
25

7
1.

12
57

94
88

8
1.

14
76

27
35

4
11

.4
38

8

0.
00

01
A

da
m

T
R

U
E

FA
L

SE
95

9
1.

15
17

60
34

1.
19

19
58

07
fa

il
ov

er
sh

ot
fir

st
co

rn
er

0.
00

01
R

M
SP

ro
p

T
R

U
E

FA
L

SE
82

0
1.

13
15

77
73

1.
22

89
70

28
9

10
.9

07
33

33
3

0.
00

5
A

da
m

FA
L

SE
FA

L
SE

92
1.

31
23

99
38

7
1.

26
36

07
86

11
.5

66
ov

er
sh

ot
fir

st
co

rn
er

bu
t

m
an

ag
ed

to
ge

tb
ac

k

0.
00

5
R

M
SP

ro
p

FA
L

SE
FA

L
SE

32
0

1.
30

55
42

82
7

1.
29

62
14

46
1

11
.5

55
33

33
3

N
ot

so
go

od
at

ke
ep

in
g

to
th

e
m

id
dl

e

0.
00

1
A

da
m

FA
L

SE
FA

L
SE

23
4

1.
22

34
59

72
1

1.
26

58
10

25
1

fa
il

0.
00

1
R

M
SP

ro
p

FA
L

SE
FA

L
SE

72
1

1.
21

11
75

79
9

1.
28

80
14

05
4

11
.5

92
un

st
ab

le

0.
00

05
A

da
m

FA
L

SE
FA

L
SE

96
6

1.
19

72
42

37
9

1.
25

47
14

25
1

11
.1

83
33

33
3

m
uc

h
m

or
e

st
ab

le
!

0.
00

05
R

M
SP

ro
p

FA
L

SE
FA

L
SE

47
8

1.
24

08
01

69
2

1.
26

90
54

65
1

11
.7

49
ov

er
sh

oo
ts

ha
rd

99

0.
00

01
A

da
m

FA
L

SE
FA

L
SE

95
1

1.
28

05
21

87
1.

33
87

43
21

11
.2

18
w

en
ts

tr
ai

gh
tl

ef
t?

0.
00

01
R

M
SP

ro
p

FA
L

SE
FA

L
SE

99
5

1.
27

10
24

34
6

1.
37

09
82

28
9

10
.8

10
4

w
en

tb
ac

kw
ar

ds

	Introduction
	Objectives and Contributions
	Report outline

	Background and Related Work
	Motivation
	Problem Definition
	Environment
	Vehicle
	Overall System
	Path Planning and Control Problems

	Related Work
	Path Planning
	Control

	Model Predictive Path Integral Control
	Problem Formulation
	Minimisation and Sampling
	MPPI Algorithm

	Simulation and Integration
	Setup and tools
	MPPI Integration
	Simulated vehicle model
	Chassis
	Suspension
	Tire friction modelling
	Motors and control

	Environment modelling
	Tracks and map data
	Odometry

	Visualisation

	Model
	State representation
	Data
	Collection
	Processing

	Dynamic variables identification
	Learning dynamics
	Framework
	Setting a Baseline
	Neural Network Experiments
	Online learning

	Cost
	Costmap
	Cost function
	Experiments

	Conclusions
	Summary
	Discussion
	Future Work
	MInf Part 2

	Bibliography
	Appendices
	Formula Student Environment
	ADS-DV Sensors and Computing
	Neural network experiments

